Solid Waste

\$EPA

Proposed

Demonstrated Available Technology (BDAT) Background Document for K101, K102

Volume 12

PROPOSED

BEST DEMONSTRATED AND AVAILABLE TECHNOLOGY (BDAT)

BACKGROUND DOCUMENT

FOR K101 AND K102

VOLUME 12

(Veterinary Pharmaceutical Industry)

U.S. Environmental Protection Agency Office of Solid Waste 401 M Street, S.W. Washington, D.C. 20460

James R. Berlow, Chief Treatment Technology Section Juan Baez-Martinez Project Manager

May 1988

U.S. Environmental Protection Agency Region 5, Library (PL-12J) 77 West Jackson Boulevard, 12th Floor Chicago, IL 60604-3590

TABLE OF CONTENTS

<u>Sect</u>	<u>ion</u>			<u>Page</u>
	EXEC	UTIVE SU	MMARY	i
1.1	INTR	ODUCTION		1-1
	1.1	Legal Ba	ackground	1-1
		1.1.1	Requirements Under HSWA	1-1
		1.1.2	Schedule for Developing Restrictions	1-5
	1.2		of Promulgated BDAT Methodology	1-6
		1.2.1	Waste Treatability Groups	1-8
		1.2.2	Demonstrated and Available Treatment	
			Technologies	1-9
			(1) Proprietary or Patented Process	1-12
			(2) Substantial Treatment	1-12
		1.2.3	Collection of Performance Data	1-13
			(1) Identification of Facilities for	
			Site Visits	1-14
			(2) Engineering Site Visit	1-16
			(3) Sampling and Analysis Plan	1-17
			(4) Sampling Visit	1-19
			(5) Onsite Engineering Report	1-19
		1.2.4	Hazardous Constituents Considered and	
			Selected for Regulation	1-20
			(1) Development of BDAT List	1-20
			(2) Constituent Selection Analysis	1-31
			(3) Calculation of Standards	1-32
		1.2.5	Compliance with Performance Standards	1-34
		1.2.6	Identification of BDAT	1-36
			(1) Screening of Treatment Data	1-36
			(2) Comparison of Treatment Data	1-37
			(3) Quality Assurance/Quality Control	1-38
		1.2.7	BDAT Treatment Standards for "Derived	
			From" and "Mixed" Wastes	1-40
			(1) Wastes From Treatment Trains	
			Generating Multiple Residues	1-40
			(2) Mixtures and Other Derived From	
			Residues	1-41
			(3) Residues from Managing Listed	
			Wastes or that Contain Listed	
			Wastes	1-43
		1.2.8	Transfer of Treatment Standards	1-44
	1.3	Variance	e from the BDAT Treatment Standard	1-46

TABLE OF CONTENTS (Continued)

Sect	<u>ion</u>		Page
2.0	INDU	STRY AFFECTED AND WASTE CHARACTERIZATION	2-1
	2.1	2.1.1 Generation of K102 Waste	2-2 2-3 2-6 2-6 2-7
3.0	APPL	ICABLE/DEMONSTRATED TREATMENT TECHNOLOGIES	3-1
	3.1 3.2 3.3	1	3-2 3-3 3-4 3-4 3-39 3-48
4.0	IDEN TECH	TIFICATION OF BEST DEMONSTRATED AND AVAILABLE NOLOGY	4-1
	4.1 4.2 4.3 4.4	4.1.1 Nonwastewaters	4-2 4-2 4-4 4-4 4-6 4-7
5.0	SELE	CTION OF REGULATED CONSTITUENTS	5-1
	5.15.25.3	BDAT List Constituents Detected in the Untreated and Treated Waste	5-2 5-19 5-20 5-24 5-27
6.0	CALC	ULATION OF TREATMENT STANDARDS	6-1
	6.1 6.2 6.3 6.4	Calculating the Treatment Standards	6-2 6-2 6-3 6-4 6-8
		6.4.2 Wastewaters	6-10

TABLE OF CONTENTS (Continued)

Section	•	Page
7.0 REFEREN	CES	7-1
<u>APPENDICES</u>		
APPENDIX A	Statistical Analysis	A-1
APPENDIX B	Analytical QA/QC	B-1
APPENDIX C	Detection Limits for K101 and K102	C-1
APPENDIX D	Treatment Standard Calculation	D-1
APPENDIX E	Thermal Conductivity Summary	E-1
APPENDIX F	Continuous Emission Monitoring Report and Strip Charts for Engineering Site Visit	F-1

LIST OF TABLES

<u>Table</u>	· ·	<u>Page</u>
1-1	BDAT CONSTITUENT LIST	1-21
2-1	MAJOR CONSTITUENTS COMPOSITION FOR K101 AND K102 WASTE	2-8
2-2	BDAT CONSTITUENT ANALYSIS AND OTHER DATA FOR WASTE CODES K101 AND K102	2-9
3-1	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K101 BY INCINERATION - SAMPLE SET #1	3-28
3-2	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K101 BY INCINERATION - SAMPLE SET #2	3-29
3-3	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K101 BY INCINERATION - SAMPLE SET #3	3-30
3-4	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K101 BY INCINERATION - SAMPLE SET #4	3-31
3-5	ANALYTICAL RESULTS FOR TREATMENT OF K101 BY INCINERATION - SAMPLE SETS 2A, 2B, AND 1	3-32
3-6	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - SAMPLE SET #1	3-33
3-7	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - SAMPLE SET #2	3-34
3-8	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - SAMPLE SET #3	3-35
3-9	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - SAMPLE SET #4	3-36
3-10	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - SAMPLE SET #5	3-37
3-11	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - SAMPLE SET #6	3-38
3-12	ANALYTICAL RESULTS FOR UNTREATED K101 KILN ASH - SAMPLE SETS 2A, 2B, AND 1	3-49
	ANALYTICAL RESULTS FOR UNTREATED K102 - SAMPLE SETS	3-50

LIST OF TABLES (Continued)

<u>Table</u>		<u>Page</u>
3-14	ANALYTICAL RESULTS FOR UNTREATED FOO6 WASTE	3-51
3-15	ANALYTICAL RESULTS FOR TREATED F006 WASTE	3-53
3-16	CEMENT KILN DUST COMPOSITION DATA	3-54
3-17	ANALYTICAL RESULTS FOR UNTREATED K101 SCRUBBER WATER	3-69
3-18	ANALYTICAL RESULTS FOR UNTREATED K102 SCRUBBER WATER	3-70
3-19	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION - SAMPLE SET #1	3-71
3-20	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION - SAMPLE SET #2	3-73
3-21	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION - SAMPLE SET #3	3-75
3-22	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION - SAMPLE SET #4	3-77
3-23	ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION - SAMPLE SET #5	3-79
5-1	BDAT LIST CONSTITUENTS IN UNTREATED AND TREATED K101 WASTE	5-4
5-2	BDAT LIST CONSTITUENTS IN UNTREATED AND TREATED K102 WASTE	5-11
5-3	CONSTITUENTS CONSIDERED FOR REGULATION IN K101	5-21
5-4	CONSTITUENTS CONSIDERED FOR REGULATION IN K102	5-22
5-5	CONSTITUENTS SELECTED FOR REGULATION IN K101/K102	5-23
6-1	REGULATED CONSTITUENTS AND CALCULATED TREATMENT STANDARDS FOR ORGANICS IN K101 AND K102 NONWASTEWATERS	6 - 5

LIST OF TABLES (Continued)

<u>Table</u>		<u>Page</u>
6-2	REGULATED CONSTITUENTS AND CALCULATED TREATMENT STANDARDS FOR INORGANICS IN K101 AND K102 NONWASTEWATERS	6-6
6-3	REGULATED CONSTITUENTS AND CALCULATED TREATMENT STANDARDS FOR K101 AND K102 WASTEWATERS	6-7
7-1	BDAT TREATMENT STANDARDS FOR K101/K102 NONWASTEWATERS	7-2
7-2	BDAT TREATMENT STANDARDS FOR K101/K102 WASTEWATERS	7-2

LIST OF FIGURES

Figure		<u>Page</u>
2-1	GENERATION OF K102 FROM 3-NITRO 4-HYDROXYPHENYLARSONIC ACID PRODUCTION	2-4
2-2	GENERATION OF K084 AND K101 FROM THE TREATMENT OF D004 WASTES	2-5
3-1	LIQUID INJECTION INCINERATOR	3-9
3-2	ROTARY KILN INCINERATOR	3-10
3-3	FLUIDIZED BED INCINERATOR	3-12
3-4	FIXED HEARTH INCINERATOR	3-13
3-5	CONTINUOUS CHEMICAL PRECIPITATION	3-57
3-6	CIRCULAR CLARIFIERS	3-60
3-7	INCLINED PLANE SETTLER	3-61

EXECUTIVE SUMMARY

BDAT Treatment Standards for K101 and K102

Pursuant to the Hazardous and Solid Waste Amendments (HSWA) enacted on November 8, 1984, and in accordance with the procedures for establishing treatment standards under section 3004 (m) of the Resource Conservation and Recovery Act (RCRA), the Environmental Protection Agency (EPA) is proposing treatment standards for the listed wastes, K101 and K102, based on the performance of treatment technologies determined by the Agency to represent Best Demonstrated Available Technology (BDAT). This background document provides the detailed analyses that support this determination.

These BDAT treatment standards represent instantaneous maximum acceptable concentration levels for selected hazardous constituents in the wastes or residuals from treatment and/or recycling. These levels are established as a prerequisite for disposal of these wastes in units designated as land disposal units according to 40 CFR Part 268 (Code of Federal Regulations). Wastes which, as generated, contain the regulated constituents at concentrations which do not exceed the treatment standards are not restricted from land disposal units. The Agency has chosen to set levels for these wastes rather than designating the use of a specific treatment technology. The Agency believes that this

allows the generators of these wastes a greater degree of flexibility in selecting a technology or train of technologies that can achieve these standards. These standards become effective as of August 8, 1988, as described in the schedule set forth in 40 CFR 268.10.

According to 40 CFR 261.32 (hazardous wastes from specific sources) waste codes K101 and K102 are from the veterinary pharmaceutical industry and are listed as follows:

K101: Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organoarsenic compounds.

K102: Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds.

Descriptions of the industry and specific processes generating these wastes, as well as descriptions of the physical and chemical waste characteristics, are provided in Section 2 of this document. The four digit Standard Industrial Classification (SIC) code most often reported for the industry generating this waste code is 2834 (veterinary pharmaceutical). The Agency estimates that there are two facilities that may potentially generate wastes identified as K101 and K102.

The Agency has determined that K101 and K102 collectively represent one general waste treatability group with two subgroups

- wastewaters and nonwastewaters. For the purpose of applicability, wastewaters are defined as wastes containing less than 1% (weight basis) filterable solids and less than 1% (weight basis) total organic carbon (TOC). Wastes not meeting this definition must comply with treatment standards for nonwastewaters.

These two treatability subgroups represent classes of wastes that have similar physical and chemical properties within the treatability group. EPA believes that each waste within these groups can be treated to the same concentrations when similar technologies are applied. The Agency has examined the sources of these two wastes from the veterinary pharmaceutical industry, the specific similarities in waste composition, potential applicable and demonstrated technologies, and attainable treatment performance. While the Agency has not, at this time, specifically identified additional wastes which would fall into this treatability group or two subgroups, this does not preclude the Agency from using these treatment performance data to establish standards for other similar wastes, in the future. A detailed discussion of applicable and demonstrated treatment technologies is provided in Section 3 of this document.

The K101 and K102 wastes, as generated, have a high total organic carbon and filterable solids content and are typically classified as organic nonwastewaters. The EPA has determined

that incineration represents BDAT for organics in this waste. Residues from treatment by incineration include ash and scrubber waters, both of which contain BDAT list metals. The scrubber waters are classified as K101/K102 wastewaters and are generated primarily as a result of the "derived from" rule and "mixture rule" as outlined in 40 CFR 261.3 (definition of hazardous waste). Chemical precipitation was determined to be BDAT for the metals present in the wastewaters. The residuals generated from chemical precipitation are an inorganic form of the K101 and K102 nonwastewaters. Kiln ash from incineration of K101 and K102 is also as an inorganic nonwastewater form of K101 and K102. Metals stabilization was determined to be BDAT for K101 and K102 inorganic forms of nonwastewaters. A discussion on the selection of best demonstrated applicable treatment (BDAT) technology is provided in Section 4 of this document.

Nonwastewaters

For nonwastewaters, one (1) organic constituent and nine (9) metal constituents are proposed for regulation in both K101 and K102. The one organic constituent in K101 being proposed is 2-nitroaniline. The one organic constituent proposed for

^{1.} This constituent is not on the list of constituents in the GENERIC QUALITY ASSURANCE PROJECT PLAN FOR LAND DISPOSAL RESTRICTIONS PROGRAM ("BDAT"), EPA/530-SW-87-011, March 1987. It is a groundwater monitoring constituent as listed in Appendix IX, 40 CFR Part 264, 51 FR 26639, July 24, 1986.

regulation in K102 is 2-nitrophenol. These two organic constituents are not on the BDAT list of constituents. However, the Agency considers these two constituents to be indicators of complete incineration of organic constituents in either K101 or K102 waste.

The Agency collected performance data for treatment of listed waste codes, K101 and K102, by rotary kiln incineration. The Agency has determined that the performance data for rotary kiln incineration indicate significant treatment of the BDAT list organic constituents in waste codes K101 and K102.

For both K101 and K102 nonwastewaters the following nine BDAT list metal constituent are proposed for regulation: antimony, arsenic, barium, cadmium, chromium, copper, lead, nickel, and zinc. The Agency is deferring the antimony, arsenic and barium treatment standards until a later date. The nine listed metals are proposed for regulation in the "derived from" forms of K101 and K102 nonwastewaters. These "derived from" forms are the ash generated from incineration, and metals precipitated from wastewater treatment. BDAT treatment standards for these nonwastewaters are proposed based on metals stabilization. No testing was performed on representative samples of K101 and K102. Therefore, metals stabilization performance data was transferred from EPA hazardous waste number, F006 based on waste characteristics affecting performance.

Wastewaters

For K101 and K102 wastewaters, one (1) organic constituent and five (5) BDAT list metal constituents are being proposed for regulation in K101 and K102. The one organic constituent in K101 being proposed is 2-nitroaniline. The one organic constituent proposed for regulation for K102 is 2-nitrophenol. The proposed metal constituents are antimony, arsenic, cadmium, lead, and mercury. A detailed discussion of the selection of constituents to be regulated is presented in Section 5 of this document.

BDAT treatment standards for wastewater forms of K101 and K102 are proposed based on performance data from a treatment system consisting of chemical precipitation and metals stabilization of the resulting residuals. No testing was performed on representative samples of K101 and K102. Therefore, chemical precipitation treatment data was transferred from characteristic waste, D004, also produced by this industry. A detailed discussion of the transfer of data is presented in Section 6 of this document.

The following tables list the specific BDAT treatment standards for wastes identified as K101 and K102. The Agency is setting standards for K101 and K102 on two types of analyses. For organic and inorganic (other than metal) constituents, the Agency is basing standards on analysis of total constituent

concentrations. For metal constituents the Agency is basing standards on analysis of leachate. The leachate is obtained from the Toxicity Characteristic Leaching Procedure (TCLP) found in Appendix I of 40 CFR Part 268. The units for total constituent concentration are in parts per million (ppm) on a weight by weight (mg/kg) basis for nonwastewater and in parts per million (ppm) on a weight by volume (mg/l) basis for wastewater. The units for leachate are in parts per million (ppm) on a weight by volume (mg/l) basis.

BDAT TREATMENT STANDARDS FOR K101/K102 WASTES

WASTEWATER

	<u>K101</u>	<u>K102</u>	
Regulated Constituents	Total Compo	sition (mg/l)	
2-Nitroaniline	0.266	NR	
2-Nitrophenol	NR	0.028	
	TCLP (mg/l)		
Antimony	**	**	
Arsenic	2.036	2.036	
Cadmium	0.238	0.238	
Lead	0.110	0.110	
Mercury	0.027	0.027	
Regulated Constituents		entration (mg/kg	
	<u>K101</u>	<u>K102</u>	
2-Nitroaniline	14.000	NR	
2-Nitrophenol	NR	13.328	
	TCLP (mg/l)		
Antimony	**	**	
Arsenic	**	**	
Barium	**	**	
Cadmium	0.066	0.066	
Chromium	3.8	3.8	
Copper	0.71	0.71	
Lead	0.53	0.53	
Nickel	0.31	0.31	
Zinc	0.086	0.086	

^{** -} Deferred for proposed regulation until later date.

NR = Not regulated since it is not present at treatable levels.

1. INTRODUCTION

This section of the background document presents a summary of the legal authority pursuant to which the BDAT treatment standards were developed, a summary of EPA's promulgated methodology for developing BDAT, and finally a discussion of the petition process that should be followed to request a variance from the BDAT treatment standards.

1.1 Legal Background

1.1.1 Requirements Under HSWA

The Hazardous and Solid Waste Amendments of 1984 (HSWA), which were enacted on November 8, 1984, and which amended the Resource Conservation and Recovery Act of 1976 (RCRA), impose substantial new responsibilities on those who handle hazardous waste. In particular, the amendments require the Agency to promulgate regulations that restrict the land disposal of untreated hazardous wastes. In its enactment of HSWA, Congress stated explicitly that "reliance on land disposal should be minimized or eliminated, and land disposal, particularly landfill and surface impoundment, should be the least favored method for managing hazardous wastes" (RCRA section 1002(b)(7), 42 U.S.C. 6901(b)(7)).

One part of the amendments specifies dates on which particular groups of untreated hazardous wastes will be prohibited from land disposal unless "it has been demonstrated to the Administrator, to a reasonable degree of certainty, that there will be no migration of hazardous constituents from the disposal unit or injection zone for as long as the wastes remain hazardous" (RCRA section 3004(d)(1), (e)(1), (g)(5), 42 U.S.C. 6924 (d)(1), (e)(1), (g)(5)).

For the purpose of the restrictions, HSWA defines land disposal "to include, but not be limited to, any placement of... hazardous waste in a landfill, surface impoundment, waste pile, injection well, land treatment facility, salt dome formation, salt bed formation, or underground mine or cave" (RCRA section 3004(k), 42 U.S.C. 6924(k)). Although HSWA defines land disposal to include injection wells, such disposal of solvents, dioxins, and certain other wastes, known as the California List wastes, is covered on a separate schedule (RCRA section 3004(f)(2), 42 U.S.C. 6924 (f)(2)). This schedule requires that EPA propose land disposal restrictions for deep well injection by August 8, 1988.

The amendments also require the Agency to set "levels or methods of treatment, if any, which substantially diminish the toxicity of the waste or substantially reduce the likelihood of migration of hazardous constituents from the waste so that

short-term and long-term threats to human health and the environment are minimized" (RCRA section 3004(m)(1), 42 U.S.C. 6924 (m)(1)). Wastes that meet treatment standards established by EPA are not prohibited and may be land disposed. In setting treatment standards for listed or characteristic wastes, EPA may establish different standards for particular wastes within a single waste code with differing treatability characteristics. One such characteristic is the physical form of the waste. This frequently leads to different standards for wastewaters and nonwastewaters.

Alternatively, EPA can establish a treatment standard that is applicable to more than one waste code when, in EPA's judgment, all the waste can be treated to the same concentration. In those instances where a generator can demonstrate that the standard promulgated for the generator's waste cannot be achieved, the Agency also can grant a variance from a treatment standard by revising the treatment standard for that particular waste through rulemaking procedures. (A further discussion of treatment variances is provided in Section 1.3.)

The land disposal restrictions are effective when promulgated unless the Administrator grants a national variance and establishes a different date (not to exceed 2 years beyond the statutory deadline) based on "the earliest date on which adequate alternative treatment, recovery, or disposal capacity

which protects human health and the environment will be available" (RCRA section 3004(h)(2), 42 U.S.C. 6924 (h)(2)).

If EPA fails to set a treatment standard by the statutory deadline for any hazardous waste in the First Third or Second Third of the schedule (see Section 1.1.2), the waste may not be disposed in a landfill or surface impoundment unless the facility is in compliance with the minimum technological requirements specified in section 3004(o) of RCRA. In addition, prior to disposal, the generator must certify to the Administrator that the availability of treatment capacity has been investigated, and it has been determined that disposal in a landfill or surface impoundment is the only practical alternative to treatment currently available to the generator. This restriction on the use of landfills and surface impoundments applies until EPA sets a treatment standard for the waste or until May 8, 1990, whichever is sooner. If the Agency fails to set a treatment standard for any ranked hazardous waste by May 8, 1990, the waste is automatically prohibited from land disposal unless the waste is placed in a land disposal unit that is the subject of a successful "no migration" demonstration (RCRA section 3004(g), 42 U.S.C. 6924(g)). "No migration" demonstrations are based on case-specific petitions that show there will be no migration of hazardous constituents from the unit for as long as the waste remains hazardous.

1.1.2 Schedule for Developing Restrictions

Under section 3004(g) of RCRA, EPA was required to establish a schedule for developing treatment standards for all wastes that the Agency had listed as hazardous by November 8, 1984.

Section 3004(g) required that this schedule consider the intrinsic hazards and volumes associated with each of these wastes. The statute required EPA to set treatment standards according to the following schedule:

- Solvents and dioxins standards must be promulgated by November 8, 1986;
- The "California List" must be promulgated by July 8, 1987;
- 3. At least one-third of all listed hazardous wastes must be promulgated by August 8, 1988 (First Third);
- 4. At least two-thirds of all listed hazardous wastes must be promulgated by June 8, 1989 (Second Third); and
- 5. All remaining listed hazardous wastes and all hazardous wastes identified as of November 8, 1984, by one or more of the characteristics defined in 40 CFR Part 261 must be promulgated by May 8, 1990 (Third Third).

The statute specifically identified the solvent wastes as those covered under waste codes F001, F002, F003, F004, and F005; it identified the dioxin-containing hazardous wastes as those covered under waste codes F020, F021, F022, and F023.

Wastes collectively known as the California List wastes, defined under section 3004(d) of HSWA, are liquid hazardous wastes containing metals, free cyanides, PCBs, corrosives (i.e.,

a pH less than or equal to 2.0), and any liquid or nonliquid hazardous waste containing halogenated organic compounds (HOCs) above 0.1 percent by weight. Rules for the California List were proposed on December 11, 1986, and final rules for PCBs, corrosives, and HOC-containing wastes were established August 12, 1987. In that rule, EPA elected not to establish standards for metals. Therefore, the statutory limits became effective.

On May 28, 1986, EPA published a final rule (51 FR 19300) that delineated the specific waste codes that would be addressed by the First Third, Second Third, and Third Third. This schedule is incorporated into 40 CFR 268.10, .11, and .12.

1.2 Summary of Promulgated BDAT Methodology

In a November 7, 1986, rulemaking, EPA promulgated a technology-based approach to establishing treatment standards under section 3004(m). Section 3004(m) also specifies that treatment standards must "minimize" long- and short-term threats to human health and the environment arising from land disposal of hazardous wastes.

Congress indicated in the legislative history accompanying the HSWA that "[t]he requisite levels of [sic] methods of treatment established by the Agency should be the best that has

been demonstrated to be achievable," noting that the intent is "to require utilization of available technology" and not a "process which contemplates technology-forcing standards" (Vol. 130 Cong. Rec. S9178 (daily ed., July 25, 1984)). interpreted this legislative history as suggesting that Congress considered the requirement under section 3004(m) to be met by application of the best demonstrated and achievable (i.e., available) technology prior to land disposal of wastes or treatment residuals. Accordingly, EPA's treatment standards are generally based on the performance of the best demonstrated available technology (BDAT) identified for treatment of the hazardous constituents. This approach involves the identification of potential treatment systems, the determination of whether they are demonstrated and available, and the collection of treatment data from well-designed and well-operated systems.

The treatment standards, according to the statute, can represent levels or methods of treatment, if any, that substantially diminish the toxicity of the waste or substantially reduce the likelihood of migration of hazardous constituents. Wherever possible, the Agency prefers to establish BDAT treatment standards as "levels" of treatment (i.e., performance standards), rather than adopting an approach that would require the use of specific treatment "methods." EPA believes that concentration-based treatment levels offer the regulated

community greater flexibility to develop and implement compliance strategies, as well as an incentive to develop innovative technologies.

1.2.1 Waste Treatability Group

In developing the treatment standards, EPA first characterizes the waste(s). As necessary, EPA may establish treatability groups for wastes having similar physical and chemical properties. That is, if EPA believes that wastes represented by different waste codes could be treated to similar concentrations using identical technologies, the Agency combines the codes into one treatability group. EPA generally considers wastes to be similar when they are both generated from the same industry and from similar processing stages. In addition, EPA may combine two or more separate wastes into the same treatability group when data are available showing that the waste characteristics affecting performance are similar or that one waste would be expected to be less difficult to treat.

Once the treatability groups have been established, EPA collects and analyzes data on identified technologies used to treat the wastes in each treatability group. The technologies evaluated must be demonstrated on the waste or a similar waste and must be available for use.

1.2.2 Demonstrated and Available Treatment Technologies

Consistent with legislative history, EPA considers demonstrated technologies to be those that are used to treat the waste of interest or a similar waste with regard to parameters that affect treatment selection (see November 7, 1986, 51 FR 40588). EPA also will consider as treatment those technologies used to separate or otherwise process chemicals and other materials. Some of these technologies clearly are applicable to waste treatment, since the wastes are similar to raw materials processed in industrial applications.

For most of the waste treatability groups for which EPA will promulgate treatment standards, EPA will identify demonstrated technologies either through review of literature related to current waste treatment practices or on the basis of information provided by specific facilities currently treating the waste or similar wastes.

In cases where the Agency does not identify any facilities treating wastes represented by a particular waste treatability group, EPA may transfer a finding of demonstrated treatment. To do this, EPA will compare the parameters affecting treatment selection for the waste treatability group of interest to other wastes for which demonstrated technologies already have been determined. The parameters affecting treatment selection and

their use for this waste are described in Section 3.2 of this document. If the parameters affecting treatment selection are similar, then the Agency will consider the treatment technology also to be demonstrated for the waste of interest. For example, EPA considers rotary kiln incineration to be a demonstrated technology for many waste codes containing hazardous organic constituents, high total organic content, and high filterable solids content, regardless of whether any facility is currently treating these wastes. The basis for this determination is data found in literature and data generated by EPA confirming the use of rotary kiln incineration on wastes having the above characteristics.

If no commercial treatment or recovery operations are identified for a waste or wastes with similar physical or chemical characteristics that affect treatment selection, the Agency will be unable to identify any demonstrated treatment technologies for the waste, and, accordingly, the waste will be prohibited from land disposal (unless handled in accordance with the exemption and variance provisions of the rule). The Agency is, however, committed to establishing treatment standards as soon as new or improved treatment processes are demonstrated (and available).

Operations only available at research facilities, pilot- and bench- scale operations, will not be considered in identifying

demonstrated treatment technologies for a waste because these technologies would not necessarily be "demonstrated."

Nevertheless, EPA may use data generated at research facilities in assessing the performance of demonstrated technologies.

As discussed earlier, Congress intended that technologies used to establish treatment standards under section 3004(m) be not only "demonstrated," but also available. To decide whether demonstrated technologies may be considered "available," the Agency determines whether they (1) are commercially available and (2) substantially diminish the toxicity of the waste or substantially reduce the likelihood of migration of hazardous constituents from the waste.

EPA will only set treatment standards based on a technology that meets the above criteria. Thus, the decision to classify a technology as "unavailable" will have a direct impact on the treatment standard. If the best technology is unavailable, the treatment standard will be based on the next best treatment technology determined to be available. To the extent that the resulting treatment standards are less stringent, greater concentrations of hazardous constituents in the treatment residuals could be placed in land disposal units.

There also may be circumstances in which EPA concludes that for a given waste none of the demonstrated treatment technologies

are "available" for purposes of establishing the 3004(m) treatment performance standards. Subsequently, these wastes will be prohibited from continued placement in or on the land unless managed in accordance with applicable exemptions and variance provisions. The Agency is, however, committed to establishing new treatment standards as soon as new or improved treatment processes become "available."

- (1) Proprietary or patented processes. If the demonstrated treatment technology is a proprietary or patented process that is not generally available, EPA will not consider the technology in its determination of the treatment standards. EPA will consider proprietary or patented processes available if it determines that the treatment method can be purchased or licensed from the proprietor or is a commercially available treatment. The services of the commercial facility offering this technology often can be purchased even if the technology itself cannot be purchased.
- (2) <u>Substantial treatment</u>. To be considered "available," a demonstrated treatment technology must "substantially diminish the toxicity" of the waste or "substantially reduce the likelihood of migration of hazardous constituents" from the waste in accordance with section 3004(m). By requiring that substantial treatment be achieved in order to set a treatment standard, the statute ensures that all wastes are adequately

treated before being placed in or on the land and ensures that the Agency does not require a treatment method that provides little or no environmental benefit. Treatment will always be deemed substantial if it results in nondetectable levels of the hazardous constituents of concern. If nondetectable levels are not achieved, then a determination of substantial treatment will be made on a case-by-case basis. This approach is necessary because of the difficulty of establishing a meaningful guideline that can be applied broadly to the many wastes and technologies to be considered. EPA will consider the following factors in an effort to evaluate whether a technology provides substantial treatment on a case-by-case basis:

- o Number and types of constituents treated;
- o Performance (concentration of the constituents in the treatment residuals); and
- o Percent of constituents removed.

If none of the demonstrated treatment technologies achieve substantial treatment of a waste, the Agency cannot establish treatment standards for the constituents of concern in that waste.

1.2.3 Collection of Performance Data

Performance data on the demonstrated available technologies are evaluated by the Agency to determine whether the data are

representative of well-designed and well-operated treatment systems. Only data from well-designed and well-operated systems are included in determining BDAT. The data evaluation includes data already collected directly by EPA and/or data provided by industry. In those instances where additional data are needed to supplement existing information, EPA collects additional data through a sampling and analysis program. The principal elements of this data collection program are: (1) identification of facilities for site visits, (2) an engineering site visit, (3) a Sampling and Analysis Plan, (4) a sampling visit, and (5) an Onsite Engineering Report.

(1) Identification of facilities for site visits. To identify facilities that generate and/or treat the waste of concern, EPA uses a number of information sources. These include Stanford Research Institute's Directory of Chemical Producers; EPA's Hazardous Waste Data Management System (HWDMS); the 1986 Treatment, Storage, Disposal Facility (TSDF) National Screening Survey; and EPA's Industry Studies Data Base. In addition, EPA contacts trade associations to inform them that the Agency is considering visits to facilities in their industry and to solicit their assistance in identifying facilities for EPA to consider in its treatment sampling program.

After identifying facilities that treat the waste, EPA uses this hierarchy to select sites for engineering visits:

(1) generators treating single wastes on site; (2) generators treating multiple wastes together on site; (3) commercial treatment, storage, and disposal facilities (TSDFs); and (4) EPA in-house treatment. This hierarchy is based on two concepts: (1) to the extent possible, EPA should develop treatment standards from data produced by treatment facilities handling only a single waste, and (2) facilities that routinely treat a specific waste have had the best opportunity to optimize design parameters. Although excellent treatment can occur at many facilities that are not high in this hierarchy, EPA has adopted this approach to avoid, when possible, ambiguities related to the mixing of wastes before and during treatment.

When possible, the Agency will evaluate treatment technologies using commercially operated systems. If performance data from properly designed and operated commercial treatment methods for a particular waste or a waste judged to be similar are not available, EPA may use data from research facilities operations. Whenever research facility data are used, EPA will explain in the preamble and background document why such data were used and will request comments on the use of such data.

Although EPA's data bases provide information on treatment for individual wastes, the data bases rarely provide data that support the selection of one facility for sampling over another. In cases where several treatment sites appear to fall into the

same level of the hierarchy, EPA selects sites for visits strictly on the basis of which facility could most expeditiously be visited and later sampled if justified by the engineering visit.

(2) Engineering site visit. Once a treatment facility has been selected, an engineering site visit is made to confirm that a candidate for sampling meets EPA's criteria for a well-designed facility and to ensure that the necessary sampling points can be accessed to determine operating parameters and treatment effectiveness. During the visit, EPA also confirms that the facility appears to be well operated, although the actual operation of the treatment system during sampling is the basis for EPA's decisions regarding proper operation of the treatment unit. In general, the Agency considers a well-designed facility to be one that contains the unit operations necessary to treat the various hazardous constituents of the waste, as well as to control other nonhazardous materials in the waste that may affect treatment performance.

In addition to ensuring that a system is reasonably well designed, the engineering visit examines whether the facility has a way to measure the operating parameters that affect performance of the treatment system during the waste treatment period. For example, EPA may choose not to sample a treatment system that operates in a continuous mode, for which an important operating

parameter cannot be continuously recorded. In such systems, instrumentation is important in determining whether the treatment system is operating at design values during the waste treatment period.

(3) <u>Sampling and Analysis Plan</u>. If after the engineering site visit the Agency decides to sample a particular plant, the Agency will then develop a site-specific Sampling and Analysis Plan (SAP) according to the Generic Quality Assurance Project Plan for the Land Disposal Restriction Program ("BDAT"), EPA/530-SW-87-011. In brief, the SAP discusses where the Agency plans to sample, how the samples will be taken, the frequency of sampling, the constituents to be analyzed and the method of analysis, operational parameters to be obtained, and specific laboratory quality control checks on the analytical results.

The Agency will generally produce a draft of the site-specific Sampling and Analysis Plan within 2 to 3 weeks of the engineering visit. The draft of the SAP is then sent to the plant for review and comment. With few exceptions, the draft SAP should be a confirmation of data collection activities discussed with the plant personnel during the engineering site visit. EPA encourages plant personnel to recommend any modifications to the SAP that they believe will improve the quality of the data.

It is important to note that sampling of a plant by EPA does not mean that the data will be used in the development of treatment standards for BDAT. EPA's final decision on whether to use data from a sampled plant depends on the actual analysis of the waste being treated and on the operating conditions at the time of sampling. Although EPA would not plan to sample a facility that was not ostensibly well designed and well operated, there is no way to ensure that at the time of the sampling the facility will not experience operating problems. Additionally, EPA statistically compares its test data to suitable industry-provided data, where available, in its determination of what data to use in developing treatment standards. The methodology for comparing data is presented later in this section.

(Note: Facilities wishing to submit data for consideration in the development of BDAT standards should, to the extent possible, provide sampling information similar to that acquired by EPA. Such facilities should review the Generic Quality Assurance Project Plan for the Land Disposal Restriction Program ("BDAT"), which delineates all of the quality control and quality assurance measures associated with sampling and analysis.

(Quality assurance and quality control procedures are summarized in Section 1.2.6 of this document.)

(4) <u>Sampling visit</u>. The purpose of the sampling visit is to collect samples that characterize the performance of the treatment system and to document the operating conditions that existed during the waste treatment period. At a minimum, the Agency attempts to collect sufficient samples of the untreated waste and solid and liquid treatment residuals so that variability in the treatment process can be accounted for in the development of the treatment standards. To the extent practicable, and within safety constraints, EPA or its contractors collect all samples and ensure that chain-of-custody procedures are conducted so that the integrity of the data is maintained.

In general, the samples collected during the sampling visit will have already been specified in the SAP. In some instances, however, EPA will not be able to collect all planned samples because of changes in the facility operation or plant upsets; EPA will explain any such deviations from the SAP in its follow-up Onsite Engineering Report.

(5) Onsite Engineering Report. EPA summarizes all its data collection activities and associated analytical results for testing at a facility in a report referred to as the Onsite Engineering Report (OER). This report characterizes the waste(s) treated, the treated residual concentrations, the design and operating data, and all analytical results including methods used

and accuracy results. This report also describes any deviations from EPA's suggested analytical methods for hazardous wastes (see Test Methods for Evaluating Solid Waste, SW-846, Third Edition, November 1986).

After the Onsite Engineering Report is completed, the report is submitted to the plant for review. This review provides the plant with a final opportunity to claim any information contained in the report as confidential. Following the review and incorporation of comments, as appropriate, the report is made available to the public with the exception of any material claimed as confidential by the plant.

- 1.2.4 Hazardous Constituents Considered and Selected for Regulation
- (1) <u>Development of BDAT list</u>. The list of hazardous constituents within the waste codes that are targeted for treatment is referred to by the Agency as the BDAT constituent list. This list, provided as Table 1-1, is derived from the constituents presented in 40 CFR Part 261, Appendices VII and VIII, as well as several ignitable constituents used as the basis of listing wastes as F003 and F005. These sources provide a comprehensive list of hazardous constituents specifically regulated under RCRA. The BDAT list consists of those constituents that can be analyzed using methods published in SW-846, Third Edition.

TABLE 1-1 BDAT Constituent List

BDAT reference no.	Parameter \\	CAS No.
	<u>Volatiles</u>	
222	Acetone	67-64-1
1	Acetonitrile	75-05-8
2	Acrolein	107-02-8
3	Acrylonitrile	107-13-1
4	Benzene	71-43-2
5	Bromodichloromethane	7 5-27-4
6	Bromomethane	74-83-9
223	n-Butyl alcohol	71-36-3
7	Carbon Tetrachloride	56-23-5
8	Carbon disulfide	75-15-0
9	Chlorobenzene	108-90-7
10	2-Chloro-1,3-butadiene	126-99-8
11	Chlorodibromomethane	124-48-1
12	Chloroethane	75-00-3
13	2-Chloroethyl vinyl ether	110-75-8
14	Chloroform	67-66-3
15	Chloromethane	74-87-3
16	3-Chloropropene	107-05-1
17	1,2-Dibromo-3-chloropropane	96-12-8
18	1,2-Dibromoethane	106-93-4
19	Dibromomethane	74-95-3
20	trans-1,4-Dichloro-2-butene	110-57-6
21	Dichlorodifluoromethane	75-71-8
22	1,1-Dichloroethane	75-35-3
23	1,2-Dichloroethane	107-06-2
24	1,1-Dichloroethylene	75-35-4
25	trans-1,2-Dichloroethene	156-60-5
26	1,2-Dichloropropane	78-87-5
27	trans-1,3-Dichloropropene	10061-02-6
28	cis-1,3-Dichloropropene	10061-01-5
29	1,4-Dioxane	123-91-1
224	2-Ethoxyethanol	110-80-5
225	Ethyl acetate	141-78-6
226	Ethyl benzene	100-41-4
30	Ethyl cyanide	107-12-0
227	Ethyl ether	60-29-7
31	Ethyl methacrylate	97-63-2
214	ethylene oxide	75-21-8
32	Iodomethane	74-88-4

TABLE 1-1 (Continued)

BDAT reference	Parameter	CAS No.
no.		
	<u>Volatiles</u> (cont.)	
33	Isobutyl alcohol	78-83-1
228	Methanol	67-56-1
34	Methyl ethyl ketone	78-93-3
229	Methyl isobutyl ketone	108-10-1
35	Methyl methacrylate	80-62-6
37	Methylacrylonitrile	126-98-7
38	Methylene chloride	75-09-2
230	2-Nitropropane	79-46-9
39	Pyridine	110 -8 6-1
40	1,1,1,2-Tetrachloroethane	630-20-6
41	1,1,2,2-Tetrachloroethane	79-34-5
42	Tetrachloroethene	127-18-4
43	Toluene	108-88-3
44	Tribromomethane	75-25-2
45	1,1,1-Trichloroethane	71-55-6
46	1,1,2-Trichloroethane	79-00-5
47	Trichloroethene	79-01-6
48	Trichloromonofluromethane	75-69-4
49	1,2,3-Trichloropropane	96-18-4
231	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1
50	Vinyl chloride	75-01-4
215	1,2-Xylene	97-47-6
216	1,3-Xylene	108-38-3
217	1,4-Xylene	106-44-5
	<u>Semivolatiles</u>	
51	Acenaphthalene	208-96-8
52	Acenaphthene	83-32-9
53	Acetophenone	96-86-2
54	2-Acetylaminofluorene	53-96-3
55	4-Aminobiphenyl	92-67-1
56	Aniline	62-53-3
57	Anthracene	120-12-7
58	Aramite	140-57-8
59	Benz(a)anthracene	56-55-3
218	Benzal chloride	98-87-3
60	Benzenethiol	108-98-6
61	Benzidine	92-87-5
62	Benzo(a)pyrene	50-32-8

TABLE 1-1 (Continued)

BDAT			
reference	Parameter	CAS No.	
no.			
	<u>Semivolatiles</u> (cont.)		
63	Benzo(b)fluoranthene	205-99-2	
64	Benzo(ghi)perylene	191-24-2	
65	Benzo(k)fluoranthene	207-08-9	
66	p-Benzoquinone	106-51-4	
67	Bis(2-chloroethoxy)ethane	111-91-1	
68	Bis(2-chloroethyl)ether	111-44-4	
69	Bis(2-chloroisopropy)ether	3 9638-32 - 9	
70	Bis(2-ethylhexy)phthalate	117-81-7	
71	4-Bromophenyl phenyl ether	101-55-3	
72	Butyl benzyl phthlate	85-68-7	
73	2-sec-Butyl-4,6-dinitrophenol	88-85-7	
74	p-Chloroaniline	106-47-8	
75	Chlorobenzilate	510-15-6	
76	p-Chloro-m-cresol	5 9-50-7	
77	2-Chloronaphthalene	91-58-7	
78	2-Chlorophenol	95-57-8	
79	3-Chloropropionitrile	54-27-67	
80	Chrysene	218-01-9	
81	ortho-Cresol	95-48-7	
82	para-Cresol	106-44-5	
232	Cyclohexanone	108-94-1	
83	Dibenz(a,h)anthracene	53-70-3	
84	Dibenzo(a,e)pyrene	192-65-4	
85	Dibenzo(a,i)pyrene	189-55-9	
86	m-Dichlorobenzene	541-73-1	
87	o-Dichlorobenzene	95-50-1	
88	p-Dichlorobenzene	106-46-7	
89	3,3'-Dichlorobenzidine	91-94-1	
90	2,4-Dichlorophenol	120-83-2	
91	2,6-Dichlorophenol	87-65-0	
92	Diethyl phthalate	84-66-2	
93	3,3'-Dimethyoxlbenzidine	119-90-4	
94	p-Dimethylaminoazobenzene	60-11-7	
95	3,3'-Dimethylbenzidine	119-93-7	
96	2,4-Dimethylphenol	105-67-9	
97	Dimethyl phthalate	131-11-3	
98	Di-n-butyl phthalate	84-74-2	
99	1,4-Dinitrobenzene	100-25-4	
100	4,6-Dinitro-o-cresol	534-52-1	
101	2,4-Dinitrophenol	51-28-5	

TABLE 1-1 (Continued)

BDAT		
reference no.	Parameter	CAS No.
······		
	Semivolatiles (cont.)	
102	2,4-Dinitrotoluene	121-14-2
103	2,6-Dinitrotoluene	606-20-2
104	Di-n-octyl phthalate	117-84-0
105	Di-n-propylnitrosamine	621-64-7
106	Diphenylamine	122-39-4
219	Diphenylnitrosamine	86-30-6
107	1,2-Diphenylhydrazine	122-66-7
108	Fluoranthene	206-44-0
109	Fluorene	86-73-7
110	Hexachlorobenzene	118-74-1
111	Hexachlorobutadiene	87-68-3
112	Hexachlorocyclopentadiene	77-47-4
113	Hexachloroethane	67-72-1
114	Hexachlorophene	70-30-4
115	Hexachloropropene	1888-71-7
116	Indeno(1,2,3-cd)pyrene	193-39-5
117	Isosafrole	120-58-1
118	Methapyrilene	91-80-5
119	3-Methycholanthrene	56-49-5
120	4,4'-Methylenebis(2-chloroaniline)	101-14-4
36	Methyl methanesulfonate	66-27-3
121	Napthalene	91-20-3
122	1,4-Naphthoquinone	130-15-4
123	1-Napthylamine	134-32-7
124	2-Napthylamine	91-59-8
125	p-Nitroaniline	100-01-6
126	Nitrobenzene	98-95-3
127	4-Nitrophenol	100-02-7
128	N-Nitrosodi-n-butylamine	924-16-3
129	N-Nitrosodiethylamine	55-18-5
130	N-Nitrosodimethylamine	62-75-9
131	N-Nitrosomethylethylamine	10595-95-6
132	N-Nitrosomorpholine	59-89-2
133	N-Nitrosopiperidine	100-75-4
134	n-Nitrosopyrrolidine	930-55-2
135	2-Methyl-5-nitroaniline	99-55-5
136	Pentachlorobenzene	608-93-5
137	Pentachloroethane	76-01-7
138	Pentachloronitrobenzene	82-68-8

TABLE 1-1 (Continued)

BDAT		040.11-
reference no.	Parameter	CAS No.
	<u>Semivolatiles</u> (cont.)	
139	Pentachlorophenol	87-86-5
140	Phenacetin	62-44-2
141	Phenanthrene	85-01-8
142	Phenol	108-85-2
220	Phthalic anhydride	85-44-9
143	2-Picoline	109-06-8
144	Pronamide	23950-58-5
145	Pyrene	129-00-0
146	Resorcinol	108-46-3
147	Safrole	94-59-7
148	1,2,4,5-Tetrachlorobenzene	95-94-3
149	2,3,4,6-Tetrachlorophenol	58-90-2
150	1,2,4-Trichlorobenzene	120-82-1
151	2,4,5-Trichlorophenol	95-95-4
152	2,4,6-Trichlorophenol	88-06-2
153	Tris(2,3-dibromopropyl)phosphate	126-72-7
	<u>Metals</u>	
154	Antimony	7440-36-0
155	Arsenic	7440-38-2
156	Barium	7440-39-3
157	Beryllium	7440-41-7
158	Cadmium	7440-47-9
159	Chromium (total)	7440-50-3
221	Chromium (hexavalent)	-
160	Copper	7440-50-8
161	Lead	7439-92-1
162	Mercury	7439-97-6
163	Nickel	7440-02-0
164	Selenium	7782-49-2
165	Silver	7440-22-4
166	Thallium	7440-28-0
167	Vanadium	7440-62-2
168	Zinc	7440-66-6
	<u>Inorganics</u>	
169	Cyanide	57-12-5
170	Fluoride	16964-48-8
171	Sulfide	8496-25-8

TABLE 1-1 (Continued)

BDAT reference	Parameter	CAS No.
no.		
	Organochlorine Pesticides	
172	Aldrin	309-00-2
173	alpha-BHC	319-84-6
174	beta-BHC	319-85-7
175	delta-BHC	319-86-8
176	gamma-BHC	58-89-9
177	Chlordane	57-74-9
178	DDD	72-54-8
179	DDE	72-55-9
180	DDT	50-29-3
181	Dieldrin	60-57-1
182	Endosulfan I	939-98-8
183	Endosulfan II	33213-6-5
184	Endrin	72-20-8
185	Endrin aldehyde	7421-93-4
186	Heptachlor	76-44-8
187	Heptachlor epoxide	1024-57-3
188	Isodrin	465-73-6
189	Kepone	143-50-0
190	Mehoxychlor	72-43-5
191	Toxaphene	8001-35-2
	Phenoxyacetic Acid Herbicides	
192	2,4-Dichlorophenoxyacetic acid	94-75-7
193	Silvex	93-72-1
194	2,4,5-T	93-76-5
	Organophosphorous Insecticides	
195	Disulfoton	298-04-4
196	Famphur	52-85-7
197	Methyl parathion	298-00-0
198	Parathion	56-38-2
199	Phorate	298 -02-2
	<u>PCBs</u>	
200	Aroclor 1016	12674-11-2
201	Aroclor 1221	11104-28-2
202	Aroclor 1232	11141-16-5

TABLE 1-1 (Continued)

BDAT	Parameter	CAS No.
reference		
no.		
	PCBs (cont.)	
203	Aroclor 1242	53469-21-9
204	Aroclor 1248	12672-29-6
205	Aroclor 1254	11097-69-1
206	Aroclor 1260	11096-82-5
	Dioxins and Furans	
207	Hexachlorodibenzo-p-dioxins	-
208	Hexachlorodibenzofuran	-
209	Pentachlorodibenzo-p-dioxins	-
210	Pentachlorodibenzofuran	-
211	Tetrachlorodibenzo-p-dioxins	-
212	Tetrachlorodibenzofuran	-
213	2,3,7,8-Tetrachlorodibenzo-p-dioxin	1746-01-6

The initial BDAT constituent list was published in EPA's Generic Quality Assurance Project Plan, March 1987 (EPA/530-SW-87-011). Additional constituents will be added to the BDAT constituent list as more key constituents are identified for specific waste codes or as new analytical methods are developed for hazardous constituents. For example, since the list was published in March 1987, 18 additional constituents (hexavalent chromium, xylene (all three isomers), benzal chloride, phthalic anhydride, ethylene oxide, acetone, n-butyl alcohol, 2-ethoxyethanol, ethyl acetate, ethyl benzene, ethyl ether, methanol, methyl isobutyl ketone, 2-nitropropane, 1,1,2-trichloro-1,2,2-trifluoroethane, and cyclohexanone) have been added to the list.

Chemicals are listed in Appendix VIII if they are shown in scientific studies to have toxic, carcinogenic, mutagenic, or teratogenic effects on humans or other life-forms, and they include such substances as those identified by the Agency's Carcinogen Assessment Group as being carcinogenic. Including a constituent in Appendix VIII means that the constituent can be cited as a basis for listing toxic wastes.

Although Appendix VII, Appendix VIII, and the F003 and F005 ignitables provide a comprehensive list of RCRA-regulated hazardous constituents, not all of the constituents can be analyzed in a complex waste matrix. Therefore, constituents that

could not be readily analyzed in an unknown waste matrix were not included on the initial BDAT list. As mentioned above, however, the BDAT constituent list is a continuously growing list that does not preclude the addition of new constituents when analytical methods are developed.

There are five major reasons that constituents were not included on the BDAT constituent list:

- 1. Constituents are unstable. Based on their chemical structure, some constituents will either decompose in water or will ionize. For example, maleic anhydride will form maleic acid when it comes in contact with water and copper cyanide will ionize to form copper and cyanide ions. However, EPA may choose to regulate the decomposition or ionization products.
- 2. EPA-approved or verified analytical methods are not available. Many constituents, such as 1,3,5-trinitrobenzene, are not measured adequately or even detected using any of EPA's analytical methods published in SW-846 Third Edition.
- 3. The constituent is a member of a chemical group designated in Appendix VIII as not otherwise specified (N.O.S.). Constituents listed as N.O.S., such as chlorinated phenols, are a generic group of some types of chemicals for which a single analytical procedure is not available. The individual members of each such group need to be listed to determine whether the constituents can be analyzed. For each N.O.S. group, all those constituents that can be readily analyzed are included in the BDAT constituent list.
- 4. Available analytical procedures are not appropriate for a complex waste matrix. Some compounds, such as auramine, can be analyzed as a pure constituent. However, in the presence of other constituents, the recommended analytical method does not positively identify the constituent. The use of high pressure liquid chromatography (HPLC) presupposes a high expectation of finding the specific constituents of interest. In using this procedure to screen samples, protocols would have to be developed on a case-specific basis to verify the identity of constituents present in

the samples. Therefore, HPLC is not an appropriate analytical procedure for complex samples containing unknown constituents.

5. Standards for analytical instrument calibration are not commercially available. For several constituents, such as benz(c)acridine, commercially available standards of a "reasonably" pure grade are not available. The unavailability of a standard was determined by a review of catalogs from specialty chemical manufacturers.

Two constituents (fluoride and sulfide) are not specifically included in Appendices VII and VIII; however, these compounds are included on the BDAT list as indicator constituents for compounds from Appendices VII and VIII such as hydrogen fluoride and hydrogen sulfide, which ionize in water.

The BDAT constituent list presented in Table 1-1 is divided into the following nine groups:

- o Volatile organics;
- o Semivolatile organics;
- o Metals;
- o Other inorganics;
- o Organochlorine pesticides;
- o Phenoxyacetic acid herbicides;
- o Organophosphorous insecticides;
- o PCBs; and
- o Dioxins and furans.

The constituents were placed in these categories based on their chemical properties. The constituents in each group are expected to behave similarly during treatment and are also analyzed, with the exception of the metals and inorganics, by using the same analytical methods.

(2) Constituent selection analysis. The constituents that the Agency selects for regulation in each treatability group are, in general, those found in the untreated wastes at treatable concentrations. For certain waste codes, the target list for the untreated waste may have been shortened (relative to analyses performed to test treatment technologies) because of the extreme unlikelihood that the constituent will be present.

In selecting constituents for regulation, the first step is to summarize all the constituents that were found in the untreated waste at treatable concentrations. This process involves the use of the statistical analysis of variance (ANOVA) test, described in Section 1.2.6, to determine if constituent reductions were significant. The Agency interprets a significant reduction in concentration as evidence that the technology actually "treats" the waste.

There are some instances where EPA may regulate constituents that are not found in the untreated waste but are detected in the treated residual. This is generally the case where presence of the constituents in the untreated waste interferes with the quantification of the constituent of concern. In such instances, the detection levels of the constituent are relatively high, resulting in a finding of "not detected" when, in fact, the constituent is present in the waste.

After determining which of the constituents in the untreated waste are present at treatable concentrations, EPA develops a list of potential constituents for regulation. The Agency then reviews this list to determine if any of these constituents can be excluded from regulation because they would be controlled by regulation of other constituents in the list.

EPA performs this indicator analysis for two reasons: (1) it reduces the analytical cost burdens on the treater and (2) it facilitates implementation of the compliance and enforcement program. EPA's rationale for selection of regulated constituents for this waste code is presented in Section 5 of this background document.

(3) Calculation of standards. The final step in the calculation of the BDAT treatment standard is the multiplication of the average treatment value by a factor referred to by the Agency as the variability factor. This calculation takes into account that even well-designed and well-operated treatment systems will experience some fluctuations in performance. EPA expects that fluctuations will result from inherent mechanical limitations in treatment control systems, collection of treated samples, and analysis of these samples. All of the above fluctuations can be expected to occur at well-designed and well-operated treatment facilities. Therefore, setting treatment standards utilizing a variability factor should be viewed not as

a relaxing of section 3004(m) requirements, but rather as a function of the normal variability of the treatment processes. A treatment facility will have to be designed to meet the mean achievable treatment performance level to ensure that the performance levels remain within the limits of the treatment standard.

The Agency calculates a variability factor for each constituent of concern within a waste treatability group using the statistical calculation presented in Appendix A. The equation for calculating the variability factor is the same as that used by EPA for the development of numerous regulations in the Effluent Guidelines Program under the Clean Water Act. The variability factor establishes the instantaneous maximum based on the 99th percentile value.

There is an additional step in the calculation of the treatment standards in those instances where the ANOVA analysis shows that more than one technology achieves a level of performance that represents BDAT. In such instances, the BDAT treatment standard is calculated by first averaging the mean performance value for each technology for each constituent of concern and then multiplying that value by the highest variability factor among the technologies considered. This procedure ensures that all the BDAT technologies used as the basis for the standards will achieve full compliance.

1.2.5 Compliance with Performance Standards

All the treatment standards reflect performance achieved by the best demonstrated available technology (BDAT). As such, compliance with these standards requires only that the treatment level be achieved prior to land disposal. It does not require the use of any particular treatment technology. While dilution of the waste as a means to comply with the standard is prohibited, wastes that are generated in such a way as to naturally meet the standard can be land disposed without treatment. With the exception of treatment standards that prohibit land disposal, all treatment standards proposed are expressed as a concentration level.

EPA has used both total constituent concentration and TCLP analyses of the treated waste as a measure of technology performance. EPA's rationale for when each of these analytical tests is used is explained in the following discussion.

For all organic constituents, EPA is basing the treatment standards on the total constituent concentration found in the treated waste. EPA based its decision on the fact that technologies exist to destroy the various organics compounds. Accordingly, the best measure of performance would be the extent to which the various organic compounds have been destroyed or the total amount of constituent remaining after treatment. (NOTE:

EPA's land disposal restrictions for solvent waste codes

F001-F005 (51 FR 40572) use the TCLP value as a measure of

performance. At the time that EPA promulgated the treatment

standards for F001-F005, useful data were not available on total

constituent concentrations in treated residuals and, as a result,

the TCLP data were considered to be the best measure of

performance.)

For all metal constituents, EPA is using both total constituent concentration and/or the TCLP as the basis for The total constituent concentration is treatment standards. being used when the technology basis includes a metal recovery operation. The underlying principle of metal recovery is the reduction of the amount of metal in a waste by separating the metal for recovery; therefore, total constituent concentration in the treated residual is an important measure of performance for this technology. Additionally, EPA also believes that it is important that any remaining metal in a treated residual waste not be in a state that is easily leachable; accordingly, EPA is also using the TCLP as a measure of performance. It is important to note that for wastes for which treatment standards are based on a metal recovery process, the facility has to comply with both the total constituent concentration and the TCLP prior to land disposal.

In cases where treatment standards for metals are not based on recovery techniques but rather on stabilization, EPA is using only the TCLP as a measure of performance. The Agency's rationale is that stabilization is not meant to reduce the concentration of metal in a waste but only to chemically minimize the ability of the metal to leach.

1.2.6 Identification of BDAT

- (1) <u>Screening of treatment data</u>. This section explains how the Agency determines which of the treatment technologies represent treatment by BDAT. The first activity is to screen the treatment performance data from each of the demonstrated and available technologies according to the following criteria:
 - 1. Design and operating data associated with the treatment data must reflect a well-designed, well-operated system for each treatment data point. (The specific design and operating parameters for each demonstrated technology for this waste code are discussed in Section 3.2 of this document.)
 - 2. Sufficient QA/QC data must be available to determine the true values of the data from the treated waste. This screening criterion involves adjustment of treated data to take into account that the type value may be different from the measured value. This discrepancy generally is caused by other constituents in the waste that can mask results or otherwise interfere with the analysis of the constituent of concern.
 - 3. The measure of performance must be consistent with EPA's approach to evaluating treatment by type of constituents (e.g., total concentration data for organics, and total concentration and TCLP for metals in the leachate from the residual).

In the absence of data needed to perform the screening analysis, EPA will make decisions on a case-by-case basis as to whether to include the data. The factors included in this case-by-case analysis will be the actual treatment levels achieved, the availability of the treatment data and their completeness (with respect to the above criteria), and EPA's assessment of whether the untreated waste represents the waste code of concern. EPA's application of these screening criteria for this waste code is provided in Section 4 of this background document.

(2) Comparison of treatment data. In cases in which EPA has treatment data from more than one technology following the screening activity, EPA uses the statistical method known as analysis of variance (ANOVA) to determine if one technology performs significantly better than the others. This statistical method (summarized in Appendix A) provides a measure of the differences between two data sets. If EPA finds that one technology performs significantly better (i.e., the data sets are not homogeneous), BDAT treatment standards are the level of performance achieved by the best technology multiplied by the corresponding variability factor for each regulated constituent.

If the differences in the data sets are not statistically significant, the data sets are said to be homogeneous.

Specifically, EPA uses the analysis of variance to determine

whether BDAT represents a level of performance achieved by only one technology or represents a level of performance achieved by more than one (or all) of the technologies. If the Agency finds that the levels of performance for one or more technologies are not statistically different, EPA averages the performance values achieved by each technology and then multiplies this value by the largest variability factor associated with any of the acceptable technologies. A detailed discussion of the treatment selection method and an example of how EPA chooses BDAT from multiple treatment systems is provided in Section A-1.

(3) Quality assurance/quality control. This section presents the principal quality assurance/quality control (QA/QC) procedures employed in screening and adjusting the data to be used in the calculation of treatment standards. Additional QA/QC procedures used in collecting and screening data for the BDAT program are presented in EPA's Generic Quality Assurance Project Plan for Land Disposal Restrictions Program ("BDAT") (EPA/530-SW-87-011, March 1987).

To calculate the treatment standards for the Land Disposal Restriction Rules, it is first necessary to determine the recovery value for each constituent (the amount of constituent recovered after spiking, which is the addition of a known amount of the constituent, minus the initial concentration in the samples divided by the amount added) for a spike of the treated

residual. Once the recovery value is determined, the following procedures are used to select the appropriate percent recovery value to adjust the analytical data:

- 1. If duplicate spike recovery values are available for the constituent of interest, the data are adjusted by the lowest available percent recovery value (i.e., the value that will yield the most conservative estimate of treatment achieved). However, if a spike recovery value of less than 20 percent is reported for a specific constituent, the data are not used to set treatment standards because the Agency does not have sufficient confidence in the reported value to set a national standard.
- 2. If data are not available for a specific constituent but are available for an isomer, then the spike recovery data are transferred from the isomer and the data are adjusted using the percent recovery selected according to the procedure described in (1) above.
- 3. If data are not available for a specific constituent but are available for a similar class of constituents (e.g., volatile organics, acid-extractable semivolatiles), then spike recovery data available for this class of constituents are transferred. All spike recovery values greater than or equal to 20 percent for a spiked sample are averaged and the constituent concentration is adjusted by the average recovery value. If spiked recovery data are available for more than one sample, the average is calculated for each sample and the data are adjusted by the lowest average value.
- If matrix spike recovery data are not available for a 4. set of data to be used to calculate treatment standards, then matrix spike recovery data are transferred from a waste that the Agency believes is a similar matrix (e.g., if the data are for an ash from incineration, then data from other incinerator ashes could be used). While EPA recognizes that transfer of matrix spike recovery data from a similar waste is not an exact analysis, this is considered the best approach for adjusting the data to account for the fact that most analyses do not result in extraction of 100 percent of the constituent. In assessing the recovery data to be transferred, the procedures outlined in (1), (2), and (3) above are followed.

The analytical procedures employed to generate the data used to calculate the treatment standards are listed in Appendix B of this document. In cases where alternatives or equivalent procedures and/or equipment are allowed in EPA's SW-846, Third Edition (November 1986) methods, the specific procedures and equipment used are also documented in this Appendix. In addition, any deviations from the SW-846, Third Edition, methods used to analyze the specific waste matrices are documented. It is important to note that the Agency will use the methods and procedures delineated in Appendix B to enforce the treatment standards presented in Section 6 of this document. Accordingly, facilities should use these procedures in assessing the performance of their treatment systems.

- 1.2.7 BDAT Treatment Standards for "Derived-From" and "Mixed" Wastes
- (1) Wastes from treatment trains generating multiple residues. In a number of instances, the proposed BDAT consists of a series of operations, each of which generates a waste residue. For example, the proposed BDAT for a certain waste code is based on solvent extraction, steam stripping, and activated carbon adsorption. Each of these treatment steps generates a waste requiring treatment—a solvent—containing stream from solvent extraction, a stripper overhead, and spent activated carbon. Treatment of these wastes may generate further residues; for instance, spent activated carbon (if not regenerated) could

be incinerated, generating an ash and possibly a scrubber water waste. Ultimately, additional wastes are generated that may require land disposal. With respect to these wastes, the Agency wishes to emphasize the following points:

- 1. All of the residues from treating the original listed wastes are likewise considered to be the listed waste by virtue of the derived-from rule contained in 40 CFR Part 261.3(c)(2). (This point is discussed more fully in (2) below.) Consequently, all of the wastes generated in the course of treatment would be prohibited from land disposal unless they satisfy the treatment standard or meet one of the exceptions to the prohibition.
- 2. The Agency's proposed treatment standards generally contain a concentration level for wastewaters and a concentration level for nonwastewaters. The treatment standards apply to all of the wastes generated in treating the original prohibited waste. Thus, all solids generated from treating these wastes would have to meet the treatment standard for nonwastewaters. All derived-from wastes meeting the Agency definition of wastewater (less than 1 percent TOC and less than 1 percent total filterable solids) would have to meet the treatment standard for wastewaters. EPA wishes to make clear that this approach is not meant to allow partial treatment in order to comply with the applicable standard.
- 3. The Agency has not performed tests, in all cases, on every waste that can result from every part of the treatment train. However, the Agency's treatment standards are based on treatment of the most concentrated form of the waste. Consequently, the Agency believes that the less concentrated wastes generated in the course of treatment will also be able to be treated to meet this value.
- (2) <u>Mixtures and other derived-from residues</u>. There is a further question as to the applicability of the BDAT treatment standards to residues generated not from treating the waste (as discussed above), but from other types of management. Examples

are contaminated soil or leachate that is derived from managing the waste. In these cases, the mixture is still deemed to be the listed waste, either because of the derived-from rule (40 CFR Part 261.3(c)(2)(i)) or the mixture rule (40 CFR Part 261.3(a)(2)(iii) and (iv)) or because the listed waste is contained in the matrix (see, for example, 40 CFR Part 261.33(d)). The prohibition for the particular listed waste consequently applies to this type of waste.

The Agency believes that the majority of these types of residues can meet the treatment standards for the underlying listed wastes (with the possible exception of contaminated soil and debris for which the Agency is currently investigating whether it is appropriate to establish a separate treatability subcategorization). For the most part, these residues will be less concentrated than the original listed waste. The Agency's treatment standards also make a generous allowance for process variability by assuming that all treatability values used to establish the standard are lognormally distributed. The waste also might be amenable to a relatively nonvariable form of treatment technology such as incineration. Finally, and perhaps most important, the rules contain a treatability variance that allows a petitioner to demonstrate that its waste cannot be treated to the level specified in the rule (40 CFR Part 268.44(a)). This provision provides a safety valve that allows persons with unusual waste matrices to demonstrate the

appropriateness of a different standard. The Agency, to date, has not received any petitions under this provision (for example, for residues contaminated with a prohibited solvent waste), indicating, in the Agency's view, that the existing standards are generally achievable.

(3) Residues from managing listed wastes or that contain listed wastes. The Agency has been asked if and when residues from managing hazardous wastes, such as leachate and contaminated ground water, become subject to the land disposal prohibitions. Although the Agency believes this question to be settled by existing rules and interpretative statements, to avoid any possible confusion the Agency will address the question again.

Residues from managing First Third wastes, listed California List wastes, and spent solvent and dioxin wastes are all considered to be subject to the prohibitions for the underlying hazardous waste. Residues from managing California List wastes likewise are subject to the California List prohibitions when the residues themselves exhibit a characteristic of hazardous waste. This determination stems directly from the derived-from rule in 40 CFR Part 261.3(c)(2) or, in some cases, from the fact that the waste is mixed with or otherwise contains the listed waste. The underlying principle stated in all of these provisions is that listed wastes remain listed until delisted.

The Agency's historic practice in processing delisting petitions that address mixing residuals has been to consider them to be the listed waste and to require that delisting petitioners address all constituents for which the derived-from waste (or other mixed waste) was listed. The language in 40 CFR Part 260.22(b) states that mixtures or derived-from residues can be delisted provided a delisting petitioner makes a demonstration identical to that which a delisting petitioner would make for the underlying waste. Consequently, these residues are treated as the underlying listed waste for delisting purposes. The statute likewise takes this position, indicating that soil and debris that are contaminated with listed spent solvents or dioxin wastes are subject to the prohibition for these wastes even though these wastes are not the originally generated waste, but rather are a residual from management (RCRA section 3004(e)(3)). It is EPA's view that all such residues are covered by the existing prohibitions and treatment standards for the listed hazardous waste that these residues contain and from which they are derived.

1.2.8 Transfer of Treatment Standards

EPA is proposing some treatment standards that are not based on testing of the treatment technology of the specific waste subject to the treatment standard. Instead, the Agency has determined that the constituents present in the subject waste can

be treated to the same performance levels as those observed in other wastes for which EPA has previously developed treatment data. EPA believes that transferring treatment performance for use in establishing treatment standards for untested wastes is technically valid in cases where the untested wastes are generated from similar industries, have similar processing steps, or have similar waste characteristics affecting performance and treatment selection. Transfer of treatment standards to similar wastes or wastes from similar processing steps requires little formal analysis. However, in a case where only the industry is similar, EPA more closely examines the waste characteristics prior to deciding whether the untested waste constituents can be treated to levels associated with tested wastes.

EPA undertakes a two-step analysis when determining whether wastes generated by different processes within a single industry can be treated to the same level of performance. First, EPA reviews the available waste characteristic data to identify those parameters that are expected to affect treatment selection. EPA has identified some of the most important constituents and other parameters needed to select the treatment technology appropriate for a given waste. A detailed discussion of each analysis, including how each parameter was selected for each waste, can be found in Section 5 of this document.

Second, when an individual analysis suggests that an untested waste can be treated with the same technology as a waste for which treatment performance data are already available, EPA analyzes a more detailed list of constituents that represent some of the most important waste characteristics that the Agency believes will affect the performance of the technology. By examining and comparing these characteristics, the Agency determines whether the untested wastes will achieve the same level of treatment as the tested waste. Where the Agency determines that the untested waste is easier to treat than the tested waste, the treatment standards can be transferred. A detailed discussion of this transfer process for each waste can be found in later sections of this document.

1.3 Variance from the BDAT Treatment Standard

The Agency recognizes that there may exist unique wastes that cannot be treated to the level specified as the treatment standard. In such a case, a generator or owner/operator may submit a petition to the Administrator requesting a variance from the treatment standard. A particular waste may be significantly different from the wastes considered in establishing treatability groups because the waste contains a more complex matrix that makes it more difficult to treat. For example, complex mixtures may be formed when a restricted waste is mixed with other waste streams by spills or other forms of inadvertent mixing. As a

result, the treatability of the restricted waste may be altered such that it cannot meet the applicable treatment standard.

Variance petitions must demonstrate that the treatment standard established for a given waste cannot be met. This demonstration can be made by showing that attempts to treat the waste by available technologies were not successful or by performing appropriate analyses of the waste, including waste characteristics affecting performance, which demonstrate that the waste cannot be treated to the specified levels. Variances will not be granted based solely on a showing that adequate BDAT treatment capacity is unavailable. (Such demonstrations can be made according to the provisions in Part 268.5 of RCRA for case-by-case extensions of the effective date.) The Agency will consider granting generic petitions provided that representative data are submitted to support a variance for each facility covered by the petition.

Petitioners should submit at least one copy to:

The Administrator
U.S. Environmental Protection Agency
401 M Street, S.W.
Washington, DC 20460

An additional copy marked "Treatability Variance" should be submitted to:

Chief, Waste Treatment Branch Office of Solid Waste (WH-565) U.S. Environmental Protection Agency 401 M Street, S.W. Washington, DC 20460 Petitions containing confidential information should be sent with only the inner envelope marked "Treatability Variance" and "Confidential Business Information" and with the contents marked in accordance with the requirements of 40 CFR Part 2 (41 FR 36902, September 1, 1976, amended by 43 FR 4000).

The petition should contain the following information:

- 1. The petitioner's name and address.
- 2. A statement of the petitioner's interest in the proposed action.
- 3. The name, address, and EPA identification number of the facility generating the waste, and the name and telephone number of the plant contact.
- 4. The process(es) and feed materials generating the waste and an assessment of whether such process(es) or feed materials may produce a waste that is not covered by the demonstration.
- 5. A description of the waste sufficient for comparison with the waste considered by the Agency in developing BDAT, and an estimate of the average and maximum monthly and annual quantities of waste covered by the demonstration. (Note: The petitioner should consult the appropriate BDAT background document for determining the characteristics of the wastes considered in developing treatment standards.)
- 6. If the waste has been treated, a description of the system used for treating the waste, including the process design and operating conditions. The petition should include the reasons the treatment standards are not achievable and/or why the petitioner believes the standards are based on inappropriate technology for treating the waste. (Note: The petitioner should refer to the BDAT background document as guidance for determining the design and operating parameters that the Agency used in developing treatment standards.)
- 7. A description of the alternative treatment systems examined by the petitioner (if any); a description of the treatment system deemed appropriate by the

petitioner for the waste in question; and, as appropriate, the concentrations in the treatment residual or extract of the treatment residual (i.e., using the TCLP, where appropriate, for stabilized metals) that can be achieved by applying such treatment to the waste.

- 8. A description of those parameters affecting treatment selection and waste characteristics that affect performance, including results of all analyses. (See Section 3.0 for a discussion of waste characteristics affecting performance that the Agency has identified for the technology representing BDAT.)
- 9. The dates of the sampling and testing.
- 10. A description of the methodologies and equipment used to obtain representative samples.
- 11. A description of the sample handling and preparation techniques, including techniques used for extraction, containerization, and preservation of the samples.
- 12. A description of analytical procedures used, including QA/QC methods.

After receiving a petition for a variance, the Administrator may request any additional information or waste samples that may be required to evaluate and process the petition. Additionally, all petitioners must certify that the information provided to the Agency is accurate under 40 CFR Part 268.4(b).

In determining whether a variance will be granted, the Agency will first look at the design and operation of the treatment system being used. If EPA determines that the technology and operation are consistent with BDAT, the Agency will evaluate the waste to determine if the waste matrix and/or physical parameters are such that the BDAT treatment standards reflect treatment of this waste. Essentially, this latter

analysis will concern the parameters affecting treatment selection and waste characteristics affecting performance parameters.

In cases where BDAT is based on more than one technology, the petitioner will need to demonstrate that the treatment standard cannot be met using any of the technologies, or that none of the technologies are appropriate for treatment of the waste. After the Agency has made a determination on the petition, the Agency's findings will be published in the Federal Register, followed by a 30-day period for public comment.

After review of the public comments, EPA will publish its final determination in the Federal Register as an amendment to the treatment standards in 40 CFR Part 268, Subpart D.

2. INDUSTRY AFFECTED AND WASTE CHARACTERIZATION

The previous section provided the background for the Agency's study of K101 and K102 wastes. The purpose of this section is to describe the industry that will be affected by land disposal restrictions on waste codes K101 and K102, and to characterize these wastes. This section includes a description of the industry affected and the production processes employed in this industry. Also included is a discussion of how K101 and K102 wastes are generated by these processes. This section concludes with a characterization of the K101 and K102 wastes, and a determination of the waste treatability group for these wastes.

The full list of hazardous waste codes from specific sources is given in 40 CFR 261.32 (see discussion in Section 1 of this document). Within this list, two specific hazardous waste codes are generated by the veterinary pharmaceuticals industry.

- K101: Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organoarsenic compounds.
- K102: Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds.

The Agency has determined that these waste codes (K101 and K102) represent a separate waste treatability group. This was

established because they originate from the same industry and similar processes: K102 in the production process and K101 in the treatment process of production wastewaters. In addition, the same treatment technologies apply to both waste codes. As a result, the Agency has examined the sources of the wastes, applicable treatment technologies, and treatment performance attainable in order to support a single regulatory approach for the two wastes.

2.1 Industry Affected and Process Description

The four digit standard industrial classification (SIC) code reported for the veterinary pharmaceuticals industry is 2834. The Agency has identified two facilities in the United States that are actively involved in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds which could generate K101 and K102 wastes. Information from the listing background document and from facility contacts provides a geographic distribution of these facilities across the United States. The two facilities that are involved in producing arsenic based veterinary pharmaceuticals are located in northeast Iowa and southwest North Carolina.

The only process that EPA has identified that uses arsenic or organo-arsenic compounds is the production of 3-Nitro-4-Hydroxy-phenylarsonic acid (3-Nitro). The manufacture of

3-Nitro requires the reaction of an organic compound with inorganic arsenic to form the organo-arsenic product. The listed waste K102 is generated in the production process. Details of the production process are considered to be Confidential Business Information (CBI) and they are not presented here. (See Figure 2-1).

The wastewaters and floor washings generated from 3-Nitro exhibit the characteristics of EP toxicity for arsenic. These wastewaters are EPA hazardous waste number D004.² In the treatment of the wastes from the production process, two listed wastes, K084 and K101, are generated (see Figure 2-2).

2.1.1 Generation of K102 Waste

The product stream from the reactor in the 3-nitro-4-hydroxyphenylarsonic acid process goes to a hydrolysis tank where carbon and caustic soda are added to decolor the product stream. The decolorized stream from the hydrolysis tank is filtered in a filter press. The spent carbon removed is the listed waste K102. The filtrate from the filtering step undergoes additional steps and the product, 3-nitro-4-hydroxyphenylarsonic acid, is recovered. (See Figure 2-1).

^{1.} Details of the production of 3-Nitro are in the RCRA CBI Docket.

Throughout the remainder of this document, this characteristic waste will be referred to simply as D004.

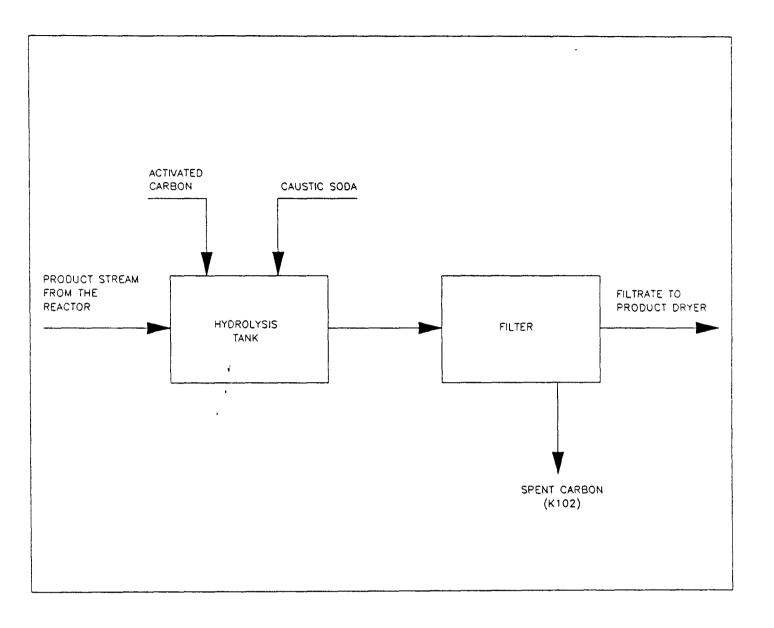


FIGURE 2-1

GENERATION OF K102 FROM 3-NITRO 4-HYDROXYPHENYLARSONIC ACID PRODUCTION

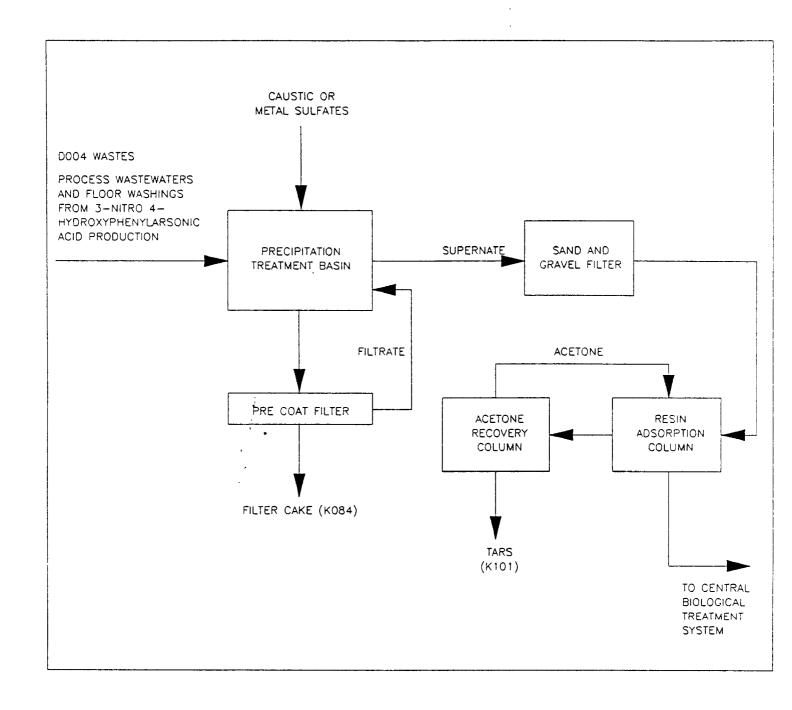


FIGURE 2-2

GENERATION OF K084 AND K101 FROM THE TREATMENT OF D004 WASTES

2.1.2 Generation of K101 Waste

The listed waste K101 is generated in the treatment of wastewaters originating from the production of arsenic-containing veterinary pharmaceuticals (See Figure 2-2). The wastewaters, D004, are treated in a series of steps. First, the wastewaters are precipitated using caustic and metal sulfates. The precipitated salts generated are the listed waste K084. Secondly, the supernate from the chemical precipitation step passes through a sand and gravel filter to remove undissolved solids. Thirdly, the filtered supernate passes through a resin adsorption column designed to remove ortho-nitroanilines (2-nitroanaline) and ortho-nitrophenol (2-nitrophenol). The resin adsorption column is regenerated with acetone. The acetone used for this regeneration is distilled in an acetone recovery column. The clay-like tars generated in the distillation are the listed waste K101.

2.2 Waste Characterization

This section includes all waste characterization data available to the Agency for the K101 and K102 wastes. An estimate of the major constituents in these wastes and their approximate concentrations are presented in Table 2-1. The percent concentration of each major constituent in the wastes was determined from best estimates based on chemical analyses.

Table 2-1 shows that the major constituent of K101 is the claylike tar from the acetone recovery column (78 percent). BDAT
list organics and metals each are present in less than 1 percent
in K101. The non-BDAT list organic, 2-nitroaniline accounts for
20 percent of K101 waste. The major constituent present in K102
is spent activated carbon (97 percent). BDAT organics account
for less that 1 percent of the K102 waste. BDAT metals are
present in K102 at less than 2 percent with arsenic and antimony
being the majority of metals present.

The ranges of BDAT constituents present in each waste and all other available data concerning waste characterization parameters, obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, are presented by waste code in Table 2-2. This table lists the ranges of BDAT organics (volatile and semivolatile), metals, and inorganics other than metals present in K101 and K102 wastes. Other parameters analyzed in the wastes include non-BDAT organics, chlorides, sulfates, total solids, total suspended solids, total dissolved solids, and total organic carbon.

2.3 Determination of Waste Treatability Group

Fundamental to waste treatment is the concept that the type of treatment technology used and the level of treatment achieved depend on the physical and chemical characteristics of the waste.

Table 2-1
Major Constituent Composition for K101 Waste*

Constituent	Weight Percent in K101	
BDAT Organics	<1	
BDAT Metals	<1	
2-Nitroaniline	<20	
Clay-like tar	<u>>78</u>	
	100%	

Major Constituent Composition for K102 Waste*

Constituent	Weight Percent in K102
BDAT Organics Arsenic Other BDAT Metals (primarily antimor Spent Activated Carbon	<1 <1 <1 >97 100%

^{* -} Percent concentrations presented here were determined from best estimates based on chemical analyses.

Reference: Onsite Engineering Reports for John Zink Company, Tulsa, Oklahoma, for waste codes K101 and K102, p. 10 and p. 11, respectively.

		Untreated K101 Waste Concentration Ranges (mg/kg)	Untreated K102 Waste Concentration Ranges (mg/kg)	
BDAT				
	Volatile Organics			
222	Acetone	<50 - 81	ND	
43	Toluene	<25 - 42	5.4 - 26	
215-217	Total Xylenes	ND	<1.5 - 5.3	
	Semivolatile Organics			
70	Bis(2-ethylhexyl)Phthalate	<36,000 - <38,000	<19.4 - <194	
142	Phenol	ND	<19.4 - <194	
	<u>Metals</u>			
154	Antimony	<3.3 - 7.4	8,960 - 18,800	
155	Arsenic	590 - 1,950	3,060 - 8,320	
156	Barium	3.5 - 108	16 - 52	
157	Beryllium	<0.1	<0.10 - 0.20	
158	Cadmium	<5.0	8.9 - 26	
159	Chromium	2.0 - 22	16 - 22	
160	Copper	128 - 289	4.7 - 6.6	
	Lead	<0.5 - 6.7	1.6 - 25.9	
162	Mercury ,	1.5 - 4.2	<0.1 - 3.5	
	Nickel '	1.8 - 5.4	<1.1 - 13	
164	Selenium	<0.5	9.1 - 17	
165	Silver	<0.7 - 1.6	<0.7	
166	Thallium	<5.0	<1.0 - 2.1	
167	Vanadium	<0.4 - 1.7	<0.40 - 0.58	
168	Zinc	35 - 111	3.1 - 8.7	
	Inorganics			
169	Cyanide	<0.67	3.21 - 5.06	
170	Flouride	7.74**	4.35**	
171	Sulfide	65.6 - 778	4,250 - 8,150	
NON-BDAT	ſ	•		
*	2-Nitroaniline	<172,000 - 191,000	ND	
*	2-Nitrophenol	ND	220 - 870	
	Chlorides	9,960 - 38,700	336 - 7,080	
	Sulfate	5,690 - 11,800	37 - 338	
	Total Solids	604,000 - 804,000	333,000 - 395,000	
	Total Suspended Solids	NA	NA	
	Total Dissolved Solids	NA	NA NA	
	Total Organic Carbon	254,900 - 407,400	163,100 - 216,500	

a - Obtained from Onsite Engineering Report, John Zink Company, Tulsa, Oklahoma, for K101 and K102. Tables 5-3 through 5-6 and 5-3 through 5-8, respectively.

^{* -} This constituent is not on the list of constituents in the GENERIC QUALITY ASSURANCE PROJECT PLAN FOR LAND DISPOSAL RESTRICTIONS PROGRAM ("BDAT"), EPA/530-SW-87-011, March 1987. It is a groundwater monitoring constituent as listed in Appendix IX, 40 CFR Part 264, 51 FR 26639, July 24, 1986.

^{** -} This constituent was analyzed in only one sample set.

NA - Not analyzed.

ND - Not detected.

In cases where EPA believes that wastes represented by different codes can be treated to similar concentrations using the same technologies, the Agency combines the codes into one treatability group. In particular, the two listed wastes K101 and K102, from the production of veterinary pharmaceuticals were combined into a single waste treatability group.

The listed wastes K101 and K102 are considered to be one treatability group for the following reasons. First, these two wastes are produced in the veterinary pharmaceutical industry and are generated in related processes. Second, the two wastes have similar chemical characteristics including: high total organic carbon, relatively low levels of BDAT metals and inorganics, and low filterable solids content. For these reasons, the Agency believes that the K101 and K102 wastes represent a separate waste treatability group.

3. APPLICABLE/DEMONSTRATED TREATMENT TECHNOLOGIES

The purpose of this section is to describe applicable treatment technologies for treatment of K101 and K102 wastes that the Agency has identified as applicable and to describe which of the applicable technologies the Agency has determined to be demonstrated. Included in this section are discussions of those applicable treatment technologies that have been demonstrated on a commercial basis. The technologies which were considered to be applicable are those which treat organic compounds by concentration reduction. Also, this section describes the performance data available for these technologies.

The previous section described the industry that will be affected by restrictions on the K102 waste, and presented a characterization of this waste. Characterization of the K102 waste indicates that this waste primarily consists of spent activated carbon (greater than 97 percent), BDAT list organics (less than 1 percent), and BDAT list metals (less than 2 percent). Analyses of K101 waste indicates that this waste primarily consists of 2-nitroaniline (less than 20 percent), a clay-like tar (greater than 78 percent), BDAT list organics (less than 1 percent), and BDAT list metals (less than 1 percent). The Agency has identified these treatment technologies which may be applicable to K101 and K102 because the technologies are designed to reduce the concentration of organic compounds present in the

untreated waste. The selection of the treatment technologies applicable for treating organic compounds in K101 and K102 wastes is based on information obtained from engineering site visits and available literature sources.

3.1 Applicable Treatment Technologies

For K101 and K102 nonwastewater, the Agency has identified the following treatment technologies as being applicable: rotary kiln incineration (which thermally destroys organic components in the waste) followed by metals stabilization of the resulting kiln ash (which reduces leachability of metal components by binding the metals to the solid matrix).

For K101 and K102 wastewaters, namely the scrubber waters generated from treatment by rotary kiln incineration, the Agency has identified the following treatment technology as being applicable: chemical precipitation (which removes dissolved metals by addition of a treatment chemical to form a metal precipitate).

Chemical precipitation of the scrubber waters generates a residual. The precipitated metals represent an inorganic form of the nonwastewaters. The kiln ash is also an inorganic form of K101 and K102 nonwastewaters and the applicable treatment technology is metals stabilization. Therefore, the applicable

technology for chemical precipitated residuals from scrubber waters is metals stabilization.

3.2 <u>Demonstrated Treatment Technologies</u>

i. Nonwastewaters

The current treatment practices for wastes K101 and K102 in the veterinary pharmaceutical industry is incineration followed by land disposal, and stabilization followed by land disposal. The Agency, therefore, believes that incineration and stabilization are applicable for treating K101 and K102 waste. However, the Agency does not believe that either incineration or stabilization alone is the best treatment for waste K101 and K102.

The Agency believes that rotary kiln incineration of organic nonwastewaters and metals stabilization of inorganic nonwastewaters is demonstrated for K101 and K102 because these technologies have been used on a commercial basis to treat wastes similar to K101 and K102. The Agency has performance data for incineration treatment for K101 and K102 organic nonwastewaters. However, the Agency did not collect performance data for metals stabilization of the inorganic K101 and K102 nonwastewaters.

ii. Wastewaters

Chemical precipitation has not been demonstrated for K101 and K102 wastewaters. Chemical precipitation has been demonstrated in wastewaters similar to those from K101 and K102 with regards to parameters affecting treatment selection.

Therefore, the Agency has determined that chemical precipitation of wastewaters is demonstrated. However, the Agency did not collect performance data for chemical precipitation of K101 and K102 wastewaters.

3.3 Detailed Description of Treatment Technologies

A more detailed discussion of the treatment technology system for which the Agency has collected performance data is presented in Sections 3.3.1, 3.3.2 and 3.3.3.

3.3.1 Incineration

This section addresses the commonly used incineration technologies: liquid injection, rotary kiln, fluidized bed incineration, and fixed hearth. A discussion is provided regarding the applicability of these technologies, the underlying principles of operation, a technology description, waste characteristics that affect performance, and finally important design and operating parameters. As appropriate the subsections are divided by type of incineration unit.

(1) Applicability and Use of this Technology

i. Liquid Injection

Liquid injection is applicable to wastes that have viscosity values sufficiently low so that the waste can be atomized in the combustion chamber. A range of literature maximum viscosity values are reported with the low being 100 SSU and the high being 10,000 SSU. It is important to note that viscosity is temperature dependent so that while liquid injection may not be applicable to a waste at ambient conditions, it may be applicable when the waste is heated. Other factors that affect the use of liquid injection are particle size and the presence of suspended solids. Both of these waste parameters can cause plugging of the burner nozzle.

ii. Rotary Kiln/ Fluidized Bed/ Fixed Hearth

These incineration technologies are applicable to a wide range of hazardous wastes. They can be used on wastes that contain high or low total organic content, high or low filterable solids, various viscosity ranges, and a range of other waste parameters. EPA has not found these technologies to be demonstrated on wastes that are comprised essentially of metals with low organic concentrations. In addition, the Agency expects that some of the high metal content wastes may not be compatible with existing and future air emission limits without emission controls far more extensive than currently practiced.

(2) Underlying Principles of Operation

i. Liquid Injection

The basic operating principle of this incineration technology is that incoming liquid wastes are volatilized and then additional heat is supplied to the waste to destabilize the chemical bonds. Once the chemical bonds are broken, these constituents react with oxygen to form carbon dioxide and water vapor. The energy needed to destabilize the bonds is referred to as the energy of activation.

ii. Rotary Kiln and Fixed Hearth

There are two distinct principles of operation for these incineration technologies, one for each of the chambers involved. In the primary chamber, energy, in the form of heat, is transferred to the waste to achieve volatilization of the various organic waste constituents. During this volatilization process some of the organic constituents will oxidize to CO₂ and water vapor. In the secondary chamber, additional heat is supplied to overcome the energy requirements needed to destabilize the chemical bonds and allow the constituents to react with excess oxygen to form carbon dioxide and water vapor. The principle of operation for the secondary chamber is similar to liquid injection.

iii. Fluidized Bed

The principle of operation for this incinerator technology is somewhat different than for rotary kiln and fixed hearth incineration relative to the functions of the primary and secondary chambers. In fluidized bed, the purpose of the primary chamber is not only to volatilize the wastes but also to essentially combust the waste. Destruction of the waste organics can be accomplished to a better degree in the primary chamber of this technology than for rotary kiln and fixed hearth because of 1) improved heat transfer from fluidization of the waste using forced air and 2) the fact that the fluidization process provides sufficient oxygen and turbulence to convert the organics to carbon dioxide, and water vapor. The secondary chamber (referred to as the freeboard) generally does not have an afterburner; however, additional time is provided for conversion of the organic constituents to carbon dioxide, water vapor, and hydrochloric acid if chlorine is present in the waste.

(3) Description of Incineration Technologies

i. Liquid Injection

The liquid injection system is capable of incinerating a wide range of gases and liquids. The combustion system has a simple design with virtually no moving parts. A burner or nozzle atomizes the liquid waste and injects it into the combustion chamber where it burns in the presence of air or oxygen. A

forced draft system supplies the combustion chamber with air to provide oxygen for combustion and turbulence for mixing. The combustion chamber is usually a cylinder lined with refractory (i.e., heat resistant) brick and can be fired horizontally, vertically upward, or vertically downward. Figure 3-1 illustrates a liquid injection incineration system.

ii. Rotary Kiln

A rotary kiln is a slowly rotating, refractory-lined cylinder that is mounted at a slight incline from the horizontal (see Figure 3-2). Solid wastes enter at the high end of the kiln, and liquid or gaseous wastes enter through atomizing nozzles in the kiln or afterburner section. Rotation of the kiln exposes the solids to the heat, vaporizes them, and allows them to combust by mixing with air. The rotation also causes the ash to move to the lower end of the kiln where it can be removed. Rotary kiln systems usually have a secondary combustion chamber or afterburner following the kiln for further combustion of the volatilized components of solid wastes.

iii. Fluidized Bed

A fluidized bed incinerator consists of a column containing inert particles such as sand which is referred to as the bed. Air, driven by a blower, enters the bottom of the bed to fluidize the sand. Air passage through the bed promotes rapid and uniform mixing of the injected waste material within the fluidized bed.

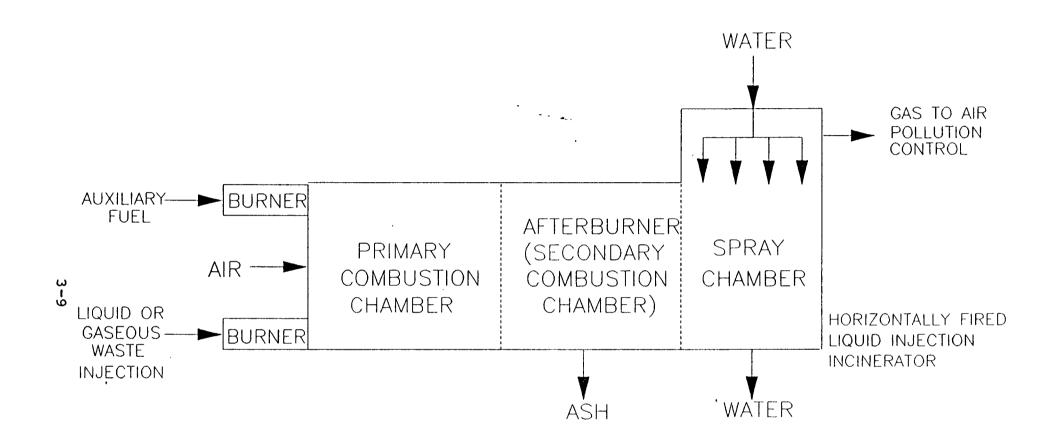


FIGURE 3-1 LIQUID INJECTION INCINERATOR

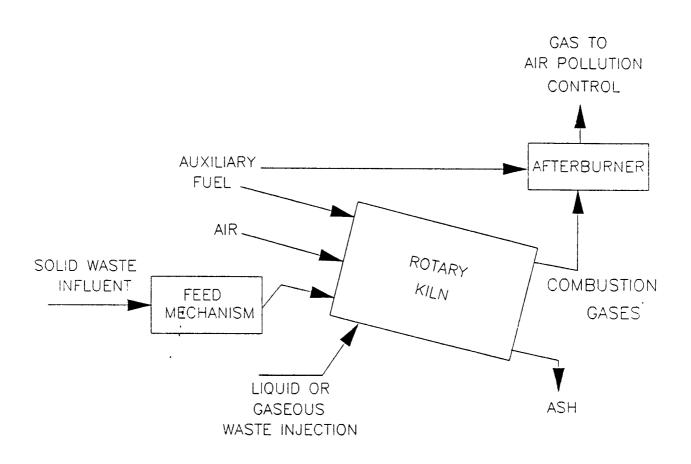


FIGURE 3-2 ROTARY KILN INCINERATOR

The fluidized bed has an extremely high heat capacity (approximately three times that of flue gas at the same temperature), thereby providing a large heat reservoir. The injected waste reaches ignition temperature quickly and transfers the heat of combustion back to the bed. Continued bed agitation by the fluidizing air allows larger particles to remain suspended in the combustion zone. (See Figure 3-3).

iv. Fixed Hearth Incineration

Fixed hearth incinerators, also called controlled air or starved air incinerators, are another major technology used for hazardous waste incineration. Fixed hearth incineration is a two-stage combustion process (see Figure 3-4). Waste is ram-fed into the first stage, or primary chamber, and burned at less than stoichiometric conditions. The resultant smoke and pyrolysis products, consisting primarily of volatile hydrocarbons and carbon monoxide, along with the normal products of combustion, pass to the secondary chamber. Here, additional air is injected to complete the combustion. This two-stage process generally yields low stack particulate and carbon monoxide (CO) emissions. The primary chamber combustion reactions and combustion gas are maintained at low levels by the starved air conditions so that particulate entrainment and carryover are minimized.

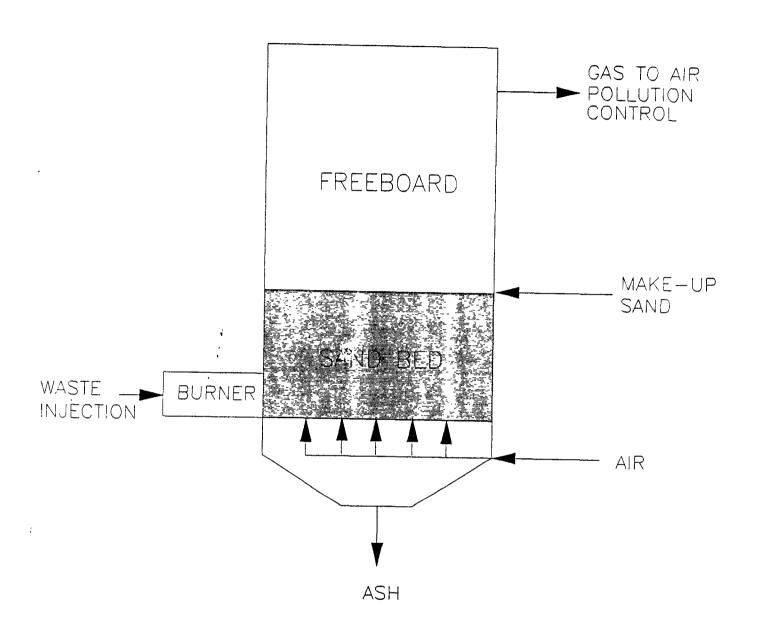


FIGURE 3-3
FLUIDIZED BED INCINERATOR

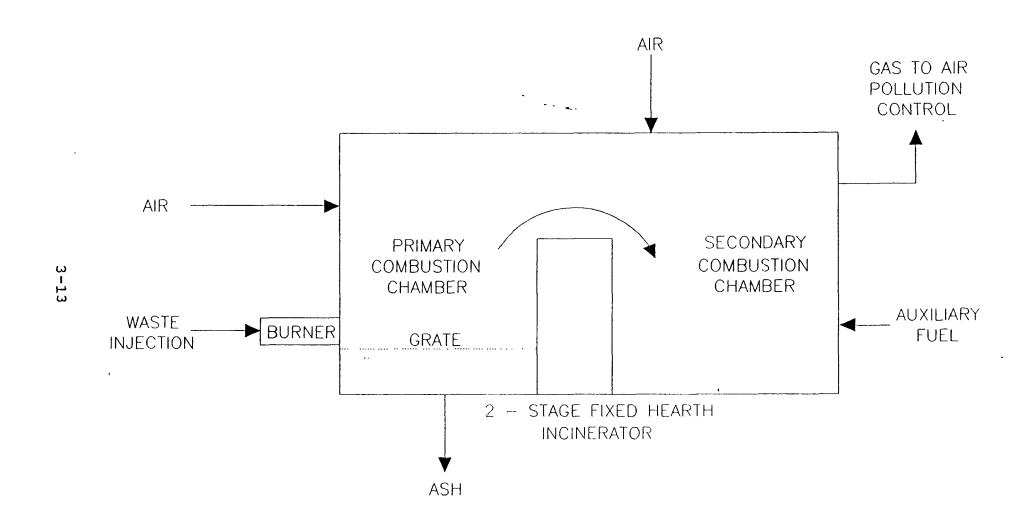


FIGURE 3-4 FIXED HEARTH INCINERATOR

v. Air Pollution Controls

Following incineration of hazardous wastes, combustion gases are generally further treated in an air pollution control system. The presence of chlorine or other halogens in the waste requires a scrubbing or absorption step to remover HCl and other halo-acids from the combustion gases. Ash in the waste is not destroyed in the combustion process. Depending on its composition, ash will either exit as bottom ash, at the discharge end of a kiln or hearth for example, or as particulate matter (fly ash) suspended in the combustion gas stream. Particulate emissions from most hazardous waste combustion systems generally have particle diameters less than one micron and require high efficiency collection devices to minimize air emissions. addition, scrubber systems provide additional buffer against accidental releases of incompletely destroyed waste products due to poor combustion efficiency or combustion upsets, such as flame outs.

(4) Waste Characteristics Affecting Performance (WCAP)

i. Liquid Injection

In determining whether liquid injection is likely to achieve the same level of performance on an untested waste as a previously tested waste, the Agency will compare dissociation bond energies of the constituents in the untested and tested waste. This parameter is being used as a surrogate indicator of

activation energy which, as discussed previously, destabilizes molecular bonds. In theory, the bond dissociation energy would be equal to the activation energy; however, in practice this is not always the case. Other energy effects (e.g., vibrational, the formation of intermediates, and interactions between different molecular bonds) may have a significant influence on activation energy.

Because of the shortcomings of bond energies in estimating activation energy, EPA analyzed other waste characteristic parameters to determine if these parameters would provide a better basis for transferring treatment standards from an untested waste to a tested waste. These parameters include heat of combustion, heat of formation, use of available kinetic data to predict activation energies, and general structural class. All of these were rejected for reasons provided below.

The heat of combustion only measures the difference in energy of the products and reactants; it does not provide information on the transition state (i.e., the energy input needed to initiate the reaction). Heat of formation is used as a predictive tool for whether reactions are likely to proceed; however, there are a significant number of hazardous constituents for which these data are not available. Use of kinetic data were rejected because these data are limited and could not be used to calculate free energy values (AG) for the wide range of

hazardous constituents to be addressed by this rule. Finally, EPA decided not to use structural classes because the Agency believes that evaluation of bond dissociation energies allows for a more direct determination of whether a constituent will be destabilized.

ii. Rotary Kiln/Fluidized Bed/Fixed Hearth

Unlike liquid injection, these incineration technologies also generate a residual ash. Accordingly, in determining whether these technologies are likely to achieve the same level of performance on an untested waste as a previously tested waste, EPA would need to examine the waste characteristics that affect volatilization of organics from the waste, as well as, destruction of the organics, once volatilized. Relative to volatilization, EPA will examine thermal conductivity of the entire waste and boiling point of the various constituents. with liquid injection, EPA will examine bond energies in determining whether treatment standards for scrubber water residuals can be transferred from a tested waste to an untested Below is a discussion of how EPA arrived at thermal conductivity and boiling point as the best method to assess volatilization of organics from the waste; the discussion relative to bond energies is the same for these technologies as for liquid injection and will not be repeated here.

Thermal Conductivity

Consistent with the underlying principles of incineration, a major factor with regard to whether a particular constituent will volatilize is the transfer of heat through the waste. case of rotary kiln, fluidized bed, and fixed hearth incineration, heat is transferred through the waste by three mechanisms: radiation, convection, and conduction. For a given incinerator, heat transferred through various wastes by radiation is more a function of the design and type of incinerator than the waste being treated. Accordingly, the type of waste treated will have a minimal impact on the amount of heat transferred by radiation. With regard to convection, EPA also believes that the type of heat transfer will generally be more a function of the type and design of incinerator than the waste itself. However, EPA is examining particle size as a waste characteristic that may significantly impact the amount of heat transferred to a waste by convection and thus impact volatilization of the various organic compounds. The final type of heat transfer, conduction, is the one that EPA believes will have the greatest impact on volatilization of organic constituents. To measure this characteristic, EPA will use thermal conductivity; an explanation of this parameter, as well as, how it can be measured is provided below.

Heat flow by conduction is proportional to the temperature gradient across the material. The proportionality constant is a property of the material and referred to as the thermal conductivity. (Note: The analytical method that EPA has identified for measurement of thermal conductivity is named "Guarded, Comparative, Longitudinal Heat Flow Technique"; it is described in Appendix E.) In theory, thermal conductivity would always provide a good indication of whether a constituent in an untested waste would be treated to the same extent in the primary incinerator chamber as the same constituent in a previously tested waste.

In practice, thermal conductivity has some limitations in assessing the transferability of treatment standards; however, EPA has not identified a parameter that can provide a better indication of heat transfer characteristics of a waste. Below is a discussion of both the limitations associated with thermal conductivity, as well as other parameters considered.

Thermal conductivity measurements, as part of a treatability comparison for two different wastes through a single incinerator, are most meaningful when applied to wastes that are homogeneous (i.e., major constituents are essentially the same). As wastes exhibit greater degrees of non-homogeneity (e.g., significant concentration of metals in soil), then thermal conductivity becomes less accurate in predicting treatability because the

measurement essentially reflects heat flow through regions having the greatest conductivity (i.e., the path of least resistance) and not heat flow through all parts of the waste.

The thermal conductivities for the listed wastes, K101 and K102, were determined by the "Guarded, Comparative, Longitudinal Heat Flow Technique." This method and the results for K101 and K102 are discussed in Appendix E. The thermal conductivities for K101 and K102 were determined to be 0.273 W/mK and 0.136 W/mK, respectively.

BTU value, specific heat, and ash content were also considered for predicting heat transfer characteristics. These parameters can no better account for non-homogeneity than thermal conductivity; additionally, they are not directly related to heat transfer characteristics. Therefore, these parameters do not provide a better indication of heat transfer that will occur in any specific waste.

Boiling Point

Once heat is transferred to a constituent within a waste, then removal of this constituent from the waste will depend on its volatility. As a surrogate of volatility, EPA is using boiling point of the constituent. Compounds with lower boiling points have higher vapor pressures and, therefore, would be more

likely to vaporize. The Agency recognizes that this parameter does not take into consideration the impact of other compounds in the waste on the boiling point of a constituent in a mixture; however, the Agency is not aware of a better measure of volatility that can easily be determined. The boiling points for 2-nitroaniline and 2-nitrophenol are 284°C and 216°C, respectively.

(5) Incineration Design and Operating Parameters

i. Liquid Injection

For a liquid injection unit, EPA's analysis of whether the unit is well designed will focus on (1) the likelihood that sufficient energy is provided to the waste to overcome the activation level for breaking molecular bonds and (2) whether sufficient oxygen is present to convert the waste constituents to carbon dioxide and water vapor. The specific design parameters that the Agency will evaluate to assess whether these conditions are met are: temperature, excess oxygen, and residence time. Below is a discussion of why EPA believes these parameters to be important, as well as a discussion of how these parameters will be monitored during operation.

It is important to point out that, relative to the development of land disposed restriction standards, EPA is only concerned with these design parameters when a quench water or

scrubber water residual is generated from treatment of a particular waste. If treatment of a particular waste in a liquid injection unit would not generate a wastewater stream, then the Agency, for purposes of land disposal treatment standards, would only be concerned with the waste characteristics that affect selection of the unit, not the above-mentioned design parameters.

Temperature

Temperature is important in that it provides an indirect measure of the energy available (i.e., BTUs/hr) to overcome the activation energy of waste constituents. As the design temperature increases, the more likely it is that the molecular bonds will be destabilized and the reaction completed.

The temperature is normally controlled automatically through the use of instrumentation which senses the temperature and automatically adjusts the amount of fuel and/or waste being fed. The temperature signal transmitted to the controller can be simultaneously transmitted to a recording device, referred to as a strip chart, and thereby continuously recorded. To fully assess the operation of the unit, it is important to know not only the exact location in the incinerator that the temperature is being monitored but also the location of the design temperature.

Excess Oxygen

It is important that the incinerator contain oxygen in excess of the stoichiometric amount necessary to convert the organic compounds to carbon dioxide and water vapor. If insufficient oxygen is present, then destabilized waste constituents could recombine to the same or other BDAT list organic compounds and potentially cause the scrubber water to contain higher concentrations of BDAT list constituents than would be the case for a well operated unit.

In practice, the amount of oxygen fed to the incinerator is controlled by continuous sampling and analysis of the stack gas. If the amount of oxygen drops below the design value, then the analyzer transmits a signal to the valve controlling the air supply and thereby increases the flow of oxygen to the afterburner. The analyzer simultaneously transmits a signal to a recording device so that the amount of excess oxygen can be continuously recorded. Again, as with temperature, it is important to know the location from which the combustion gas is being sampled.

Carbon Monoxide

Carbon monoxide is an important operating parameter because it provides an indication of the extent to which the waste

organic constituents are being converted to CO₂ and water vapor. As the carbon monoxide level increases, it indicates that greater amounts of organic waste constituents are unreacted or partially reacted. Increased carbon monoxide levels can result from insufficient excess oxygen, insufficient turbulence in the combustion zone, or insufficient residence time.

Waste Feed Rate

The waste feed rate is important to monitor because it is correlated to the residence time. The residence time is associated with a specific Btu energy value of the feed and a specific volume of combustion gas generated. Prior to incineration, the BTU value of the waste is determined through the use of a laboratory device known as a bomb calorimeter. volume of combustion gas generated from the waste to be incinerated is determined from an analysis referred to as an ultimate analysis. This analysis determines the amount of elemental constituents present which include carbon, hydrogen, sulfur, oxygen, nitrogen, and halogens. Using this analysis plus the total amount of air added, the volume of combustion gas can be calculated. Having determined both the BTU content and the expected combustion gas volume, the feed rate can be fixed at the desired residence time. Continuous monitoring of the feed rate will determine whether the unit was operated at a rate corresponding to the designed residence time.

ii. Rotary Kiln

For this incineration, EPA will examine both the primary and secondary chamber in evaluating the design of a particular incinerator. Relative to the primary chamber, EPA's assessment of design will focus on whether it is likely that sufficient energy will be provided to the waste in order to volatilize the waste constituents. For the secondary chamber, analogous to the sole liquid injection incineration chamber, EPA will examine the same parameters discussed previously under liquid injection incineration. These parameters will not be discussed again here.

The particular design parameters to be evaluated for the primary chamber are: kiln temperature, residence time, and revolutions per minute. Below is a discussion of why EPA believes these parameters to be important, as well as a discussion of how these parameters will be monitored during operation.

Temperature

The primary chamber temperature is important, in that it provides an indirect measure of the energy input (i.e., BTUs/hr) that is available for heating the waste. The higher the temperature is designed to be in a given kiln, the more likely it is that the constituents will volatilize. As discussed earlier

under "Liquid Injection", temperature should be continuously monitored and recorded. Additionally, it is important to know the location of the temperature sensing device in the kiln.

Residence Time

This parameter is important in that it affects whether sufficient heat is transferred to a particular constituent in order for volatilization to occur. As the time that the waste is in the kiln is increased, a greater quantity of heat is transferred to the hazardous waste constituents. The residence time will be a function of the specific configuration of the rotary kiln including the length and diameter of the kiln, the waste feed rate, and the rate of rotation.

Revolutions Per Minute (RPM)

This parameter provides an indication of the turbulence that occurs in the primary chamber of a rotary kiln. As the turbulence increases, the quantity of heat transferred to the waste would also be expected to increase. However, as the RPM value increases, the residence time decreases resulting in a reduction of the quantity of heat transferred to the waste. This parameter needs to be carefully evaluated because it provides a balance between turbulence and residence time.

iii. Fluidized Bed

As discussed previously, in the section on "Underlying Principles of Operation", the primary chamber accounts for almost all of the conversion of organic wastes to carbon dioxide, water vapor, and acid gas if halogens are present. The secondary chamber will generally provide additional residence time for thermal oxidation of the waste constituents. Relative to the primary chamber, the parameters that the Agency will examine in assessing the effectiveness of the design are temperature, residence time, and bed pressure differential. The first two were discussed under rotary kiln and will not be discussed here. The latter, bed pressure differential, is important in that it provides an indication of the amount of turbulence and, therefore, indirectly the amount of heat supplied to the waste. In general, as the pressure drop increases, both the turbulence and heat supplied increase. The pressure drop through the bed should be continuously monitored and recorded to ensure that the designed valued is achieved.

iv. Fixed Hearth

The design considerations for this incineration unit are similar to a rotary kiln with the exception that rate of rotation (i.e., RPMs) is not an applicable design parameter. For the primary chamber of this unit, the parameters that the Agency will examine in assessing how well the unit is designed are the same as discussed under rotary kiln; for the secondary chamber (i.e.,

afterburner), the design and operating parameters of concern are the same as previously discussed under "Liquid Injection".

(6) Incineration Performance Data

Performance data collected by EPA for rotary kiln incineration are presented in Tables 3-1 to 3-11. These tables present the analytical data for K101 and K102 collected during the Agency's sampling visit. The untreated K101 and K102 wastes, the treated K101 and K102 wastes (kiln ash) and the scrubber wastewater generated were analyzed for BDAT list volatile and semivolatile organic compounds and other parameters that affect incinerator performance.

Included in these tables are the design values and actual operating ranges for the key operating parameters of the rotary kiln incinerator system and the high performance scrubber system for each sample set collected.

TABLE 3-1 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K101 BY INCINERATION - Sample Set #1 a

	Comple Learning	Untreated K101 Waste	Scrubber Wastewater	
	Sample Location (EPA Sample Number)	to incinerator (SZ7-101)	(S29-101) (mg/l)	
		(mg/kg)		
DAT LIS	SI			
	Volatile Organics	-		
	Acetone Toluene	<50 <25		<0.010 <0.005
	Semivolatile Organics			
70	Bis(2-ethylhexyl)Phthalate	<36,000	0.020	
ION-BDA	T LIST			
*	2-Nitroaniline Total Solids Total Suspended Solids Total Dissolved Solids Total Organic Carbon	191,000 748,000 NA NA 407,400		<0.050 10,400 1,620 8,460 67.3**
	OPERATING PARAMETERS		DESIGN VALUE	OPERATING RANGE
	Incinerator System:			
	Kiln temperature (deg. F), T1 Kiln exhaust temperature (deg. F), T2 Kiln pressure (in. H ₂ O), KV Kiln rotational speed (rpm), RS Natural gas feed rate to kiln (MM Btu/hr), FGK Natural gas pressure to kiln (psig), PGK Afterburner temperature (deg. F), T3 Natural gas feed rate to afterburner (MM Btu/hr), FGA Natural gas pressure to afterburner (psig), PGA Quench tower temperature (deg. F), T4 Feed rate of K1O2 to kiln (lbs/hr), FW Recirculation pump discharge pressure (psig), P1		1600-2000 1600-2000 < -0.10 0.25 < 4 25 2000 <4 25 Not controlled 500 80	1850 - 1960 1855 - 1961 (-0.06) - (-0.12) 0.25 0.96 - 1.64 24.5 - 25 1984 - 2010 0.880 25 445 - 595 204 80
	Hydrosonic Scrubber System:			
	Pressure drop across venturi in Pressure drop across Stage 1 (Pressure drop across Stage 2 (Total pressure drop across scrubber inlet temperature (de Stage 1 nozzle temperature (de Stage 2 nozzle temperature (de Cyclone outlet temperature (de Recirculated water flow to Stage Recirculated water flow to Stage)	in. H ₂ 0), P1 in. H ₂ 0), P2 cubber unit (in. H ₂ 0), P1 eg. F), T5 eg. F), T6 eg. F), T7 eg. F), T8 ege 1 (gpm), W1	>0 20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled 9.5-10.5 5.5-6.5	1.94 - 1.98 27 21.5 38.5 - 39.5 200 180 - 182 175 - 180 175 - 180 12 6.0

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101.
 Tables 3-1, 3-2 and 5-3.

 * - Not on BOAT List

^{** -} This an average of two results for total organic carbon analysis on same sample.
NA - Not analyzed.

TABLE 3-2 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K101 BY INCINERATION - Sample Set #2 a

Scrubber Wastewater

Untreated K101 Waste

cation le Number) Organics ile Organics ylhexyl)Phthalate	to incinerator (SZ7-102) (mg/kg) 		(SZ9-102) (mg/l) <0.010 <0.005
Organics ile Organics	<50		<0.010
ile Organics			
ile Organics			
	<25		<0.005
vlhexvl)Phthalate			
, montely nemocace	<38,000		0.013
iline	<188,000		<0.050
ids	793,000	3	32,000
	NA		914
		2	23,600 89.6**
3770 GG 351	,,,,,,,		6 /10
PARAMETERS		DESIGN VALUE	OPERATING RANGE
r System:			
rature (deg. F), T1		1600-2000	1710 - 1940
), T2	1600-2000	1735 - 1914
		< -0.10	(-0.06) - (-0.20)
			0.25
			0.400 - 0.640
			25 1991 - 2019
			0.640 - 0.920
			25
			474 - 543
of K102 to kiln (lbs/hr	r), FW	500	196
		80	75 - 80
Scrubber System:			
		. 🍖	1.98 - 2.10
rop across venturi flow	≀ meter (in. H _~ O). PV	>0	1,70 - 2,10
rop across venturi flow rop across Stage 1 (in.		>0 20-25	27 - 28
rop across Stage 1 (in.	.Н ₂ 0), Р1 ²		
rop across Stage 1 (in. rop across Stage 2 (in.	.Н ₂ 0), Р1 ²	20-25	27 - 28
rop across Stage 1 (in. rop across Stage 2 (in.	. H ₂ 0), P1 ² . H ₂ 0), P2 per unit (in. H ₂ 0), PT	20-25 20-25	27 - 28 20 - 21 38.5 205 - 210
rop across Stage 1 (in- rop across Stage 2 (in- sure drop across scrubb nlet temperature (deg. zzle temperature (deg.	. H ₂ 0), P1 ⁴ . H ₂ 0), P2 per unit (in. H ₂ 0), PT F), T5 F), T6	20-25 20-25 >30 Not controlled Not controlled	27 - 28 20 - 21 38.5 205 - 210 184 - 188
rop across Stage 1 (in- rop across Stage 2 (in- sure drop across scrubb nlet temperature (deg. zzle temperature (deg. zzle temperature (deg.	. H ₂ 0), P1 ⁴ . H ₂ 0), P2 per unit (in. H ₂ 0), PT F), T5 F), T6 F), T7	20-25 20-25 >30 Not controlled Not controlled Not controlled	27 - 28 20 - 21 38.5 205 - 210 184 - 188 174 - 175
rop across Stage 1 (in- rop across Stage 2 (in- sure drop across scrubb nlet temperature (deg. zzle temperature (deg. zzle temperature (deg. tlet temperature (deg.	. H ₂ 0), P1 ⁴ . H ₂ 0), P2 per unit (in. H ₂ 0), PT F), T5 F), T6 F), T7 F), T8	20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled	27 - 28 20 - 21 38.5 205 - 210 184 - 188 174 - 175 175
rop across Stage 1 (in- rop across Stage 2 (in- sure drop across scrubb nlet temperature (deg. zzle temperature (deg. zzle temperature (deg. tlet temperature (deg. ed water flow to Stage	. H ₂ O), P1	20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled Not controlled 9.5-10.5	27 - 28 20 - 21 38.5 205 - 210 184 - 188 174 - 175 175
rop across Stage 1 (in- rop across Stage 2 (in- sure drop across scrubb nlet temperature (deg. zzle temperature (deg. zzle temperature (deg. tlet temperature (deg.	. H ₂ O), P1	20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled	27 - 28 20 - 21 38.5 205 - 210 184 - 188 174 - 175 175
	ure (in. H ₂ O), KV lional speed (rpm), RS as feed rate to kiln (MM as pressure to kiln (psi ar temperature (deg. F), as feed rate to afterbur as pressure to afterbur aer temperature (deg. F) of K1O2 to kiln (lbs/hr	ids 793,000 pended Solids NA solved Solids NA anic Carbon 401,100 PARAMETERS PARAMETERS Prature (deg. F), T1 st temperature (deg. F), T2 ure (in. H ₂ 0), KV ional speed (rpm), RS s feed rate to kiln (MM Btu/hr), FGK spressure to kiln (psig), PGK retemperature (deg. F), T3 sfeed rate to afterburner (MM Btu/hr), FGA spressure to afterburner (psig), PGA ter temperature (deg. F), T4 of K102 to kiln (lbs/hr), FW tion pump discharge pressure (psig), P1	pended Solids solved Solids NA anic Carbon AU1,100 PARAMETERS DESIGN VALUE PARAMETERS PARAMETERS DESIGN VALUE PARAMETERS PARAMETERS DESIGN VALUE PARAMETERS PARAMETERS PARAMETERS DESIGN VALUE PARAMETERS PARAMETERS PARAMETERS PARAMETERS PARAMETERS DESIGN VALUE PARAMETERS PARAMETERS

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101.
 Tables 3-1, 3-2 and 5-4.
 * - Not on BDAT List
 ** - This an average of two results for total organic carbon analysis on same sample.

NA - Not analyzed.

TABLE 3-3 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K101 BY INCINERATION - Sample Set #3 a

	Sample Location	Untreated K101 Waste	Scrubber Wastewater	
	(EPA Sample Number)	to incinerator (\$27-103)	(SZ9-103)	
		(mg/kg)		(mg/l)
DAT LIS	ST			
	Volatile Organics			
	Acetone Toluene	<50 42		<0.010 <0.005
	Semivolatile Organics			
70	Bis(2-ethylhexyl)Phthalate	<34,000	0.011	
ION-BDA	T LIST			
*	2-Nitroaniline Total Solids Total Suspended Solids Total Dissolved Solids Total Organic Carbon	<172,000 804,000 NA NA 281,200		<0.050 18,500 289 17,700 30.4**
	OPERATING PARAMETERS		DESIGN VALUE	OPERATING RANGE
	Incinerator System:			
	Kiln temperature (deg. F), T1 Kiln exhaust temperature (deg. F), T2 Kiln pressure (in. H ₂ O), KV Kiln rotational speed (rpm), RS Natural gas feed rate to kiln (MM Btu/hr), FGK Natural gas pressure to kiln (psig), PGK Afterburner temperature (deg. F), T3 Natural gas feed rate to afterburner (MM Btu/hr), FGA Natural gas pressure to afterburner (psig), PGA Quench tower temperature (deg. F), T4 Feed rate of K1O2 to kiln (lbs/hr), FW Recirculation pump discharge pressure (psig), P1		1600-2000 1600-2000 < -0.10 0.25 < 4 25 2000 <4 25 Not controlled 500 80	1625 - 1940 1576 - 1880 (-0.06) - (-0.10) 0.25 0.400 24.5 1940 - 1991 0.92 - 0.96 25 458 - 513 192 75 - 80
	Hydrosonic Scrubber System:			
	Pressure drop across venturi for Pressure drop across Stage 1 (Pressure drop across Stage 2 (Total pressure drop across scroubber inlet temperature (de Stage 1 nozzle temperature (de Stage 2 nozzle temperature (de Cyclone outlet temperature (de Recirculated water flow to Stage Croulated water flow to Stage Stage Stage Pressure (psig), PS Steam temperature (deg. F), TS	in. H ₂ O), P1 in. H ₂ O), P2 subber unit (in. H ₂ O), PT eg. F), T5 eg. F), T6 eg. F), T7 eg. F), T8 ege 1 (gpm), W1 ege 2 (gpm), W2	>0 20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled 9.5-10.5 5.5-6.5 160-170 370-380	2.10 - 2.16 27 20 38.5 205 180 - 188 175 170 -175 12 6.0 Not in operation

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101. Tables 3-1, 3-2 and 5-5.
 * - Not on BDAT List
 ** - This an average of two results for total organic carbon analysis on same sample.
 NA - Not analyzed.

TABLE 3-4 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K101 BY INCINERATION - Sample Set #4

	Sample Location	Untreated K101 Waste to incinerator	Scrubber Wastewater	
	(EPA Sample Number)	(SZ7-104)	(SZ9-104) (mg/l)	
		(mg/kg)		
DAT LI	<u>ST</u>			
	Volatile Organics			
	Acetone Toluene	81 <25		<0.010 <0.005
	Semivolatile Organics			
70	Bis(2-ethylhexyl)Phthalate	<38,000	0.012	
ION-BDA	T LIST			
*	2-Nitroaniline Total Solids Total Suspended Solids Total Dissolved Solids Total Organic Carbon	<190,000 604,000 NA NA 254,900		<0.050 22,600 373 21,100 38.0**
	OPERATING PARAMETERS		DESIGN VALUE	OPERATING RANGE
	Incinerator System:			
Kiln temperature (deg. F), T1 Kiln exhaust temperature (deg. F), T2 Kiln pressure (in. H ₂ O), KV Kiln rotational speed (rpm), RS Natural gas feed rate to kiln (MM Btu/hr), FGK Natural gas pressure to kiln (psig), PGK Afterburner temperature (deg. F), T3 Natural gas feed rate to afterburner (MM Btu/hr), FGA Natural gas pressure to afterburner (psig), PGA Quench tower temperature (deg. F), T4 Feed rate of K102 to kiln (lbs/hr), FW Recirculation pump discharge pressure (psig), P1		1600-2000 1600-2000 < -0.10 0.25 < 4 25 2000 <4 25 Not controlled 500 80	1700 1383 - 1631 0 - (-0.10) 0.25 0.40 - 2.00 24.5 1868 - 1891 0.96 24 - 24.5 467 - 486 129 80	
	Hydrosonic Scrubber System:			
	Pressure drop across venturi Pressure drop across Stage 1 Pressure drop across Stage 2 Total pressure drop across sc Scrubber inlet temperature (d Stage 1 nozzle temperature (d Stage 2 nozzle temperature (d	(in. H ₂ 0), P1 (in. H ₂ 0), P2 (in. H ₂ 0), P2 (in. H ₂ 0), PT (in. H ₂ 0), T5 (in. H ₂ 0), T6	>0 20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled	2.0 - 2.25 27 20 38.5 - 40.6 205 178 175 170 - 172

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101. Tables 3-1, 3-2 and 5-6.

* - Not on BDAT List

^{** -} This an average of two results for total organic carbon analysis on same sample.

NA - Not analyzed.

TABLE 3-5 ANALYTICAL RESULTS FOR TREATMENT OF K101 BY INCINERATION - Sample Sets 2A, 2B, and 1 a

Sample Location (EPA Sample Number)	Treated Waste (Kiln Ash) (2A) TOTAL (mg/kg)	Treated Waste (Kiln Ash) (2B) TOTAL (mg/kg)	Treated Waste (Kiln Ash) (1) TOTAL (mg/kg)
DAT List			
Volatile Organics			
22 Acetone	0.010	<0.010	<0.010
43 Toluene	<0.005	<0.005	<0.005
Semivolatile Organics			
70 Bis(2-ethylhexyl)Phthlate	<0.420	<0.420	<0.420
ION -BDAT List			
* 2-Nitroaniline .	<2	<2	<2
Total Solids (%)	94.5	94.8	96.2
Total Suspended Solids .	NA	NA	NA
Total Dissolved Solids	NA	NA	NA
Total Organic Carbon	267**	795**	2,130**

a - Obtained from the Onsite Engineering Report, John Zink Company, Tulsa, Oklahoma for K101, Table 5-7.

^{* -} Constituent is not on the BDAT list.

^{** -} This is an average of four results for Total Organic Carbon analysis on same sample.

NA - Not analyzed.

TABLE 3-6 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - Sample Set #1 $^{\rm a}$

	Sample Location (EPA Sample Number)	Untreated K102 Waste to incinerator (SZ4-101)	Treated Waste (Kiln Ash) (SZ5-101)	Scrubber Wastewater (SZ6-101)
	·	(mg/kg)	Total (mg/kg)	(mg/l)
BOAT LIS	<u> </u>			
	— Volatile Organics			
43	Toluene	9.4	<1.5	<0.005
215-217	Total Xylenes	<1.5	<1.5	<0.005
	Semivolatile Organics			
	Bis(2-ethylhexyl)Phthalate Phenol	<182 <182	<1.0 <1.0	0.016 0.017
NON-BDAT	LIST			
*	2-Nitrophenol Total Solids Total Suspended Solids Total Dissolved Solids Total Organic Carbon	370 337,000 NA NA 173,200	<1.0 732,500** NA NA 22,400***	<0.010 6200 1,980 1,930 17.1***
.	OPERATING PARAMETERS		DESIGN VALUE	OPERATING RANGE
•	Incinerator System:			
	Kiln temperature (deg. F), T1 Kiln exhaust temperature (deg. Kiln pressure (in. H ₂ 0), KV Kiln rotational speed (rpm), R Natural gas feed rate to kiln Natural gas pressure to kiln (Afterburner temperature (deg. Natural gas pressure to after Natural gas pressure to after Quench tower temperature (deg. Feed rate of K102 to kiln (lbs Recirculation pump discharge p	S (MM Btu/hr), FGK psig), PGK F), T3 purner (MM Btu/hr), FGA urner (psig), PGA F), T4 /hr), FW	1600-2000 1600-2000 < -0.10 0.25 < 4 25 2000 <4 25 Not controlled 500 80	2000 1889-1892 (-0.01)-(-0.02) 0.25 1.92 25 1928-1934 0.88-1.04 20-27.5 486-496 565 80
	Hydrosonic Scrubber System:			
	Pressure drop across venturi f Pressure drop across Stage 1 (Pressure drop across Stage 2 (Total pressure drop across scr Scrubber inlet temperature (de Stage 1 nozzle temperature (de Cyclone outlet temperature (de Cyclone outlet temperature (de Recirculated water flow to Sta Recirculated water flow to Sta Steam pressure (psig), PS Steam temperature (deg. F), TS	in. H ₂ O), P1 in. H ₂ O), P2 ubber ² unit (in. H ₂ O), PT g. F), T5 g. F), T6 g. F), T7 g. F), T8 ge 1 (gpm), W1	>0 20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled 5.5-10.5 5.5-6.5 160-170 370-380	1.62-1.68 21.5-27.0 20.0-21.0 30.5-31.0 200 170-172 180-185 180 10.1-10.5 6.0-6.5 180-185 375

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K102. Tables 3-2, 3-3 and 5-3.

* - Not on BDAT List

^{** -} This an average of two results for total solids analysis on same sample.

*** - This an average of four results for total organic carbon analysis on same sample.

NA - Not analyzed.

TABLE 3-7 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - Sample Set #2 a

	Sample Location (EPA Sample Number)	Untreated K102 Waste to incinerator (S24-102)	Treated Waste (Kiln Ash) (SZ5-102)	Scrubber Wastewater (SZ6-102)
		(mg/kg)	Total (mg/kg)	(mg/l)
BDAT LIS	<u>SI</u>			
	Volatile Organics			
_	Toluene	5.4	<1.5	<0.005
215-217	Total Xylenes	<1.5	<1.5	<0.005
	Semivolatile Organics			
	Bis(2-ethylhexyl)Phthalate Phenol	<19.4 <19.4	<1.0 <1.0	<0.010 0.019T
ION-BDAT	LIST			
*	2-Nitrophenol Total Solids Total Suspended Solids Total Dissolved Solids Total Organic Carbon	220 356,000 NA NA 166,000	<1.0 706,000** NA NA 24,200***	<0.010 5,130 2,910 2,610 22.9***
	OPERATING PARAMETERS		DESIGN VALUE	OPERATING RANGE
	Incinerator System:		•	
	Kiln temperature (deg. F), I1 Kiln exhaust temperature (deg. Kiln pressure (in. H ₂ 0), KV Kiln rotational speed (rpm), R: Natural gas feed rate to kiln Natural gas pressure to kiln (Afterburner temperature (deg. Natural gas pressure to afterb Natural gas pressure to afterb Quench tower temperature (deg. Feed rate of K102 to kiln (lbs. Recirculation pump discharge pr	S (MM Btu/hr), FGK osig), PGK F), T3 ourner (MM Btu/hr), FGA urner (psig), PGA F), T4 /hr), FW	1600-2000 1600-2000 < -0.10 0.25 < 4 25 2000 <4 25 Not controlled 500 80	1860-1950 1864-1924 -0.05 0.25 1.04-1.20 25 1949 0.92-0.96 20 486-509 565 80
	Hydrosonic Scrubber System:			
	Pressure drop across venturi f Pressure drop across Stage 1 (Pressure drop across Stage 2 (Total pressure drop across scru Scrubber inlet temperature (des Stage 1 nozzle temperature (des Stage 2 nozzle temperature (des Cyclone outlet temperature (des Recirculated water flow to Stage Recirculated water flow to Stage Steam pressure (psig), PS Steam temperature (deg. F), TS	in. H ₂ O), P1 fin. H ₂ O), P2 ubber unit (in. H ₂ O), PT g. F), T5 g. F), T6 g. F), T7 g. F), T8 ge 1 (gpm), W1	>0 20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled 9.5-10.5 5.5-6.5 160-170 370-380	1.54-1.64 20.5-21.0 19.5-21.0 30.0-30.5 200 176-178 180-185 180-182 9.75 6.5 165-167 375

a - Obtained from Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K102. Tables 3-2, 3-3 and 5-4.

^{* -} Constituent has not yet been assigned a BDAT number.

^{** -} This an average of two results for total solids analysis on same sample.

*** - This an average of four results for total organic carbon analysis on same sample.

NA - Not analyzed.

T - This value is under investigation by laboratory to confirm compound's presence.

TABLE 3-8 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - Sample Set #3 a

	Sample Location	Untreated K102 Waste to incinerator	Treated Waste (Kiln Ash)	Scrubber Wastewater
	(EPA Sample Number)	(\$Z4-103)	(SZ5-103) Total	(SZ6-103)
	**************************************	(mg/kg)	(mg/kg)	(mg/l)
DAT LIS	<u>sī</u>			
	Volatile Organics			
	Toluene Totał Xylenes	5.7 <1.5	<1.5 <1.5	<0.005 <0.005
	Semivolatile Organics			
	Bis(2-ethylhexyl)Phthalate Phenol	<19.4 <19.4	<1.0 <1.0	0.022 <0.010
ION-BDAT	LIST			
*	2-Nitrophenol Total Solids Total Suspended Solids Total Dissolved Solids Total Organic Carbon	230 355,000 NA NA 167,800	<1.0 601,500** NA NA 36,700***	<0.010 5,130 4,440 2,550 23.9***
	OPERATING PARAMETERS		DESIGN VALUE	OPERATING RANGE
	Incinerator System:			
	Kiln temperature (deg. F), T1 Kiln exhaust temperature (deg. Kiln pressure (in. H ₂ O), KV Kiln rotational speed (rpm), R: Natural gas feed rate to kiln Natural gas pressure to kiln (Afterburner temperature (deg. Natural gas pressure to afterb Natural gas pressure to afterb Quench tower temperature (deg. Feed rate of K102 to kiln (lbs Recirculation pump discharge p	S (MM Btu/hr), FGK psig), PGK F), T3 burner (MM Btu/hr), FGA urner (psig), PGA F), T4 /hr), FW	1600-2000 1600-2000 < -0.10 0.25 < 4 25 2000 <4 25 Not controlled 500 80	1800-1850 1850-1879 0.0-0.15* 0.25 1.00-1.04 25 1925-1928 0.80 25 480 515
	Hydrosonic Scrubber System:			
	Pressure drop across venturi f Pressure drop across Stage 1 (Pressure drop across Stage 2 (Total pressure drop across scr Scrubber inlet temperature (de Stage 1 nozzle temperature (de Cyclone outlet temperature (de Recirculated water flow to Sta Recirculated water flow to Sta Steam pressure (psig), PS Steam temperature (deg. F), IS	<pre>in. H₂O), P1 in. H₂O), P2 ubber unit (in. H₂O), PT g. F), T5 g. F), T6 g. F), T7 g. F), T8 ge 1 (gpm), W1 ge 2 (gpm), W2</pre>	>0 20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled 5.5-10.5 5.5-6.5 160-170 370-380	1.46-1.56 21.5-26.0 20.5-21.0 30.5-31.0 200 178 185 182 10.5 6.5-6.6 170-180 375

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K102.
 Tables 3-2, 3-3 and 5-5.
 * - Not on BDAT List

^{** -} This an average of two results for total solids analysis on same sample.

*** - This an average of four results for total organic carbon analysis on same sample.

NA - Not analyzed.

TABLE 3-9 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - Sample Set #4 a

	Sample Location	Untreated K102 Waste to incinerator	Treated Waste (Kiln Ash)	Scrubber Wastewater
	(EPA Sample Number)	(SZ4-104)	(SZ5-104) Total	(\$26-104)
		(mg/kg)	(mg/kg)	(mg/l)
DAT LIS	<u>81</u>			
	Volatile Organics			
	Toluene Total Xylenes	6.1 <1.5	<1.5 <1.5	<0.005 <0.005
	Semivolatile Organics			
	Bis(2-ethylhexyl)Phthalate Phenol	<194 <194	<1.0 <1.0	0.031 0.023
NON-BDA	T LIST			
*	2-Nitrophenol Total Solids Total Suspended Solids Total Dissolved Solids Total Organic Carbon	480 333,000 NA NA 163,100	<1.0 400,500** NA NA 422,000***	<0.010 8,260 6,290 2,620 25.9***
	OPERATING PARAMETERS		DESIGN VALUE	OPERATING RANGE
	Incinerator System:	-		
	Kiln temperature (deg. F), T1 Kiln exhaust temperature (deg. Kiln pressure (in. H ₂ O), KV Kiln rotational speed (rpm), R Natural gas feed rate to kiln Natural gas pressure to kiln (Afterburner temperature (deg. Natural gas feed rate to after Natural gas pressure to afterb Quench tower temperature (deg. Feed rate of K1O2 to kiln (lbs Recirculation pump discharge p	S (MM Btu/hr), FGK psig), PGK F), T3 burner (MM Btu/hr), FGA urner (psig), PGA F), T4 /hr), FW	1600-2000 1600-2000 <-0.10 0.25 <.4 25 2000 <4 25 Not controlled 500 80	1750-1775 1817-1827 (-0.05)-(-0.10) 0.25 1.04-1.12 25 1931-1953 0.76 25 482-490 414 75-80
	Hydrosonic Scrubber System:			
	Pressure drop across venturi for Pressure drop across Stage 1 (Pressure drop across Stage 2 (Total pressure drop across scroscrubber inlet temperature (de Stage 1 nozzle temperature (de Stage 2 nozzle temperature (de Cyclone outlet temperature (de Recirculated water flow to Stage includated water flow to Stage Steam pressure (psig), PS Steam temperature (deg. F), TS	in. H ₂ O), P1 in. H ₂ O), P2 ubber unit (in. H ₂ O), PT g. F), T5 g. F), T6 g. F), T7 g. F), T8 ge 1 (gpm), W1 ge 2 (gpm), W2	>0 20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled 9.5-10.5 5.5-6.5 160-170 370-380	1.52-1.54 21.0-21.5 21.0 31.5-35.5 200 176 182-185 180-183 10.5 6.6 162-195 372-380

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K102.
 Tables 3-2, 3-3 and 5-6.
 * - Not on BDAT List

^{** -} This an average of two results for total solids analysis on same sample.

*** - This an average of four results for total organic carbon analysis on same sample.

NA - Not analyzed.

TABLE 3-10 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - Sample Set #5 a

	Sample Location (EPA Sample Number)	Untreated K102 Waste to incinerator (SZ4-105)	Treated Waste (Kiln Ash) (SZ5-105)	Scrubber Wastewater (SZ6-105)
	(LFA Sample Number)		Total (mg/kg)	
		(mg/kg)	(mg/kg)	(mg/l)
DAT LIS	<u>81</u>			
	Volatile Organics			
	Toluene	23		<0.005
215-217	Total Xylenes	4.5		<0.005
	Semivolatile Organics		NO	
	Bis(2-ethylhexyl)Phthalate Phenol	<194 <194		0.021 0.015
142	riidide	\$174	SAMPLES	0.015
ION-BDAT	T LIST			
*	2-Nitrophenol	740	TAKEN	<0.010
	Total Solids Total Suspended Solids	393,000 NA		8,920 6,210
	Total Dissolved Solids	NA NA		2,530
	Total Organic Carbon	214,700		30.3**
	ODEDATING DADAWETERS		DEGLOW VALUE	ODERATIVO DAVIGE
	OPERATING PARAMETERS		DESIGN VALUE	OPERATING RANGE
	Incinerator System:			
	Kiln temperature (deg. F), T1 Kiln exhaust temperature (deg. Kiln pressure (in. H ₂ O), KV Kiln rotational speed (rpm), RS Natural gas feed rate to kiln (p Natural gas pressure to kiln (p Afterburner temperature (deg. F Natural gas feed rate to afterbu Natural gas pressure to afterbu Quench tower temperature (deg. Feed rate of K102 to kiln (lbs/Recirculation pump discharge pressure press	MM Btu/hr), FGK sig), PGK), T3 urner (MM Btu/hr), FGA rner (psig), PGA F), T4 hr), FW	1600-2000 1600-2000 < -0.10 0.25 < 4 25 2000 <4 25 Not controlled 500 80	1780 1837-1848 -0.08 0.25-0.29 1.12 25 1928-1930 0.76 25 491-518 414 75-77
	Hydrosonic Scrubber System:			
	Pressure drop across venturi floressure drop across Stage 1 (in Pressure drop across Stage 2 (in Total pressure drop across scrubor inlet temperature (deg Stage 1 nozzle temperature (deg Stage 2 nozzle temperature (deg Cyclone outlet temperature (deg Recirculated water flow to Stage	n. H ₂ 0), P1 ⁴ n. H ₂ 0), P2 bber unit (in. H ₂ 0), P1 . F), T5 . F), T6 . F), T7 . F), T8	>0 20-25 20-25 >30 Not controlled Not controlled Not controlled Ont controlled 9.5-10.5	1.50 21.5 20.5 30.5-31.0 200 176-178 185 182

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K102.
 Tables 3-2, 3-3 and 5-7.

 * - Not on BDAT List

^{** -} This an average of two results for total organic carbon analysis on same sample.
NA - Not analyzed.

TABLE 3-11 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF K102 BY INCINERATION - Sample Set #6 a

	Sample Location	Untreated K102 Waste to incinerator	Treated Waste (Kiln Ash)	Scrubber Wastewater
	(EPA Sample Number)	(\$Z4-106)	(SZ5-106) Total (mg/kg)	(\$26-106)
		(mg/kg)	(må\ka)	(mg/l)
BDAT LIS	<u>sr</u>		•	
	Volatile Organics			
	Toluene Total Xylenes	26 5.3		<0.005 <0.005
	Semivolatile Organics		NO	
	Bis(2-ethylhexyl)Phthalate Phenol	<184 <184	SAMPLES	0.012 0.017
NON-PDA1	T & LCT		SAMPLES	
NON-BDA1		870 395,000 NA NA 216,500	TAKEN	<0.010 9,160 6,410 2,370 35.9**
	OPERATING PARAMETERS		DESIGN VALUE	OPERATING RANGE
	Incinerator System:			
	Kiln temperature (deg. F), I1 Kiln exhaust temperature (deg. Kiln pressure (in. H ₂ O), KV Kiln rotational speed (rpm), RS Natural gas feed rate to kiln (Afterburner temperature (deg. Matural gas pressure to afterb Natural gas pressure to afterb Natural gas pressure to afterb Quench tower temperature (deg. Feed rate of K102 to kiln (lbs, Recirculation pump discharge pressure pressure to afterb	MM Btu/hr), FGK psig), PGK F), T3 purner (MM Btu/hr), FGA urner (psig), PGA F), T4 /hr), FW	1600-2000 1600-2000 < -0.10 0.25 < 4 25 2000 <4 25 Not controlled 500 80	1740 1810-1828 (-0.09)-(-0.12) 0.29 1.08-1.12 25 1971-1976 0.76 25 526-560 389 74-77
	Hydrosonic Scrubber System:			
	Pressure drop across venturi f Pressure drop across Stage 1 (Pressure drop across Stage 2 (Total pressure drop across scri Scrubber inlet temperature (de Stage 1 nozzle temperature (de Stage 2 nozzle temperature (de Cyclone outlet temperature (de Recirculated water flow to Sta Recirculated water flow to Sta Steam pressure (psig), PS Steam temperature (deg. F), TS	in. H ₂ O), P1	>0 20-25 20-25 >30 Not controlled Not controlled Not controlled Not controlled 9.5-10.5 5.5-6.5 160-170 370-380	1.50-1.52 21.5-22.0 20.5-21.0 30.5-31.5 200 176-182 185 180-182 9.9-10.5 6.3-6.6 160-190 370-380

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K102.
 Tables 3-2, 3-3 and 5-8.
 * - Not on BDAT List

^{** -} This an average of two results for total organic carbon analysis on same sample.
NA - Not analyzed.

3.3.2 Stabilization of Metals

Stabilization refers to a broad class of treatment processes that chemically reduce the mobility of hazardous constituents in a waste. Solidification and fixation are other terms that are sometimes used synonymously for stabilization or to describe specific variations within the broader class of stabilization. Related technologies are encapsulation and thermoplastic binding; however, EPA considers these technologies to be distinct from stabilization in that the operational principles are significantly different.

(1) Applicability and Use of Stabilization

Stabilization is used when a waste contains metals that will leach from the waste when it is contacted by water. In general, this technology is applicable to wastes containing BDAT list metals, having a high filterable solids content, low TOC content, and low oil and grease content. This technology is commonly used to treat residuals generated from treatment of electroplating wastewaters. For some wastes, an alternative to stabilization is metal recovery.

(2) Underlying Principles of Operation

The basic principle underlying this technology is that stabilizing agents and other chemicals are added to a waste in order to minimize the amount of metal that leaches. The reduced leachability is accomplished by the formation of a lattice structure and/or chemical bonds that bind the metals to the solid matrix and, thereby, limit the amount of metal constituents that can be leached when water or a mild acid solution comes into contact with the waste material.

There are two principal stabilization processes used; these are cement based and lime based. A brief discussion of each is provided below. In both cement-based or lime/pozzolan-based techniques, the stabilizing process can be modified through the use of additives, such as silicates, that control curing rates or enhance the properties of the solid material.

i. Portland Cement-Based Process

Portland cement is a mixture of powdered oxides of calcium, silica, aluminum, and iron, produced by kiln burning of materials rich in calcium and silica at high temperatures (i.e., 1400°C to 1500°C). When the anhydrous cement powder is mixed with water, hydration occurs and the cement begins to set. The chemistry involved is complex because many different reactions occur depending on the composition of the cement mixture.

As the cement begins to set, a colloidal gel of indefinite composition and structure is formed. Over a period of time, the gel swells and forms a matrix composed of interlacing, thin, densely-packed silicate fibrils. Constituents present in the waste slurry (e.g., hydroxides and carbonates of various heavy metals, are incorporated into the interstices of the cement matrix. The high pH of the cement mixture tends to keep metals in the form of insoluble hydroxide and carbonate salts.) It has been hypothesized that metal ions may also be incorporated into the crystal structure of the cement matrix, but this hypothesis has not been verified.

ii. <u>Lime/Pozzolan-Based Process</u>

Pozzolan, which contains finely divided, noncrystalline silica (e.g., fly ash or components of cement kiln dust), is a material that is not cementitious in itself, but becomes so upon the addition of lime. Metals in the waste are converted to silicates or hydroxides which inhibit leaching. Additives, again, can be used to reduce permeability and thereby further decrease leaching potential.

(3) Description of Stabilization Processes

In most stabilization processes, the waste, stabilizing agent, and other additives, if used, are mixed and then pumped to a curing vessel or area and allowed to cure. The actual

operation (equipment requirements and process sequencing) will depend on several factors such as the nature of the waste, the quantity of the waste, the location of the waste in relation to the disposal site, the particular stabilization formulation to be used, and the curing rate. After curing, the solid formed is recovered from the processing equipment and shipped for final disposal.

In instances where waste contained in a lagoon is to be treated, the material should be first transferred to mixing vessels where stabilizing agents are added. The mixed material is then fed to a curing pad or vessel. After curing, the solid formed is removed for disposal. Equipment commonly used also includes facilities to store waste and chemical additives. Pumps can be used to transfer liquid or light sludge wastes to the mixing pits and pumpable uncured wastes to the curing site. Stabilized wastes are then removed to a final disposal site.

Commercial concrete mixing and handling equipment generally can be used with wastes. Weighing conveyors, metering cement hoppers, and mixers similar to concrete batching plants have been adapted in some operations. Where extremely dangerous materials are being treated, remote-control and in-drum mixing equipment, such as that used with nuclear waste, can be employed.

(4) Waste Characteristics Affecting Performance

In determining whether stabilization is likely to achieve the same level of performance on an untested waste as on a previously tested waste, the Agency will focus on the characteristics that inhibit the formation of either the chemical bonds or the lattice structure. The four characteristics EPA has identified as affecting treatment performance are the presence of (1) fine particulates, (2) oil and grease, (3) organic compounds, and (4) certain inorganic compounds.

i. Fine Particulates

For both cement-based and lime/pozzolan-based processes, the literature states that very fine solid materials (i.e., those that pass through a No. 200 mesh sieve, 74 um particle size) can weaken the bonding between waste particles and cement by coating the particles. This coating can inhibit chemical bond formation and decreases the resistance of the material to leaching.

ii. Oil and Grease

The presence of oil and grease in both cement-based and lime/pozzolan-based systems results in the coating of waste particles and the weakening of the bonding between the particle and the stabilizing agent. This coating can inhibit chemical bond formation and thereby, decrease the resistance of the material to leaching.

iii. Organic Compounds

The presence of organic compounds in the waste interferes with the chemical reactions and bond formation which inhibit curing of the stabilized material. This results in a stabilized waste having decreased resistance to leaching. The total organic carbon content for K101 and K102 nonwastewaters is 267 to 2,130 mg/kg for K101 and 24,200 to 422,000 mg/kg for K102.

iv. Sulfate and Chlorides

The presence of certain inorganic compounds will interfere with the chemical reactions, weakening bond strength and prolonging setting and curing time. Sulfate and chloride compounds may reduce the dimensional stability of the cured matrix, thereby increasing leachability potential.

Accordingly, EPA will examine these constituents when making decisions regarding transfer of treatment standards based on stabilization. The amounts of sulfate in K101 and K102 nonwastewaters are 148 to 193 mg/kg and 12 to 55.9 mg/kg, respectively. Chlorides are present at 8.7 to 11.1 mg/kg in K101 and 71.5 to 103 mg/kg in K102.

(5) Design and Operating Parameters

In designing a stabilization system, the principal parameters that are important to optimize so that the amount of

leachable metal constituents is minimized are (1) selection of stabilizing agents and other additives, (2) ratio of waste to stabilizing agents and other additives, (3) degree of mixing, and (4) curing conditions.

(1) Selection of stabilizing agents and other additives. The stabilizing agent and additives used will determine the chemistry and structure of the stabilized material and, therefore, will affect the leachability of the solid material. Stabilizing agents and additives must be carefully selected based on the chemical and physical characteristics of the waste to be stabilized. For example, the amount of sulfates in a waste must be considered when a choice is being made between a lime/pozzolan and a Portland cement-based system.

In order to select the type of stabilizing agents and additives, the waste should be tested in the laboratory with a variety of materials to determine the best combination.

(2) Amount of stabilizing agents and additives. The amount of stabilizing agents and additives is a critical parameter in that sufficient stabilizing materials are necessary in the mixture to bind the waste constituents of concern properly, thereby making them less susceptible to leaching. The appropriate weight ratios of waste to stabilizing agent and other additives are established empirically by setting up a series of

laboratory tests that allow separate leachate testing of different mix ratios. The ratio of water to stabilizing agent (including water in waste) will also impact the strength and leaching characteristics of the stabilized material. Too much water will cause low strength; too little will make mixing difficult and, more importantly, may not allow the chemical reactions that bind the hazardous constituents to be fully completed.

duration of mixing. Mixing is necessary to ensure homogeneous distribution of the waste and the stabilizing agents. Both undermixing and overmixing are undesirable. The first condition results in a nonhomogeneous mixture; therefore, areas will exist within the waste where waste particles are neither chemically bonded to the stabilizing agent nor physically held within the lattice structure. Overmixing, on the other hand, may inhibit gel formation and ion adsorption in some stabilization systems. As with the relative amounts of waste, stabilizing agent, and additives within the system, optimal mixing conditions generally are determined through laboratory tests. During treatment it is important to monitor the degree (i.e., type and duration) of mixing to ensure that it reflects design conditions.

(4) Curing conditions. The curing conditions include the duration of curing and the ambient curing conditions (temperature and humidity). The duration of curing is a critical parameter to ensure that the waste particles have had sufficient time in which to form stable chemical bonds and/or lattice structures. time necessary for complete stabilization depends upon the waste type and the stabilization used. The performance of the stabilized waste (i.e., the levels of constituents in the leachate) will be highly dependent upon whether complete stabilization has occurred. Higher temperatures and lower humidity increase the rate of curing by increasing the rate of evaporation of water from the solidification mixtures. if temperatures are too high, the evaporation rate can be excessive and result in too little water being available for completion of the stabilization reaction. The duration of the curing process should also be determined during the design stage and typically will be between 7 and 28 days.

(6) Stabilization Performance Data

Performance data for the stabilization of K101 and K102 kiln ash and precipitated metals from the scrubber waters was not collected by EPA. Therefore, performance data will be transferred from the stabilization of waste code F006 (a non-specific waste from non-specific sources) which is similar based on waste characteristics affecting performance. Tables 3-12 and

3-13 present analytical data for K101 and K102 kiln ash. The kiln ash was analyzed for BDAT list metals and other parameters that affect the stabilization process. The analytical results for the treatment of F006 by stabilization are shown in Tables 3-14 and 3-15. Table 3-16 presents the composition data for the cement kiln dust used in the stabilization process.

3.3.3 Chemical Precipitation

(1) Applicability and Use of Chemical Precipitation

Chemical precipitation is used when dissolved metals are to be removed from solution. This technology can be applied to a wide range of wastewaters containing dissolved BDAT list metals and other metals as well. This treatment process has been practiced widely by industrial facilities since the 1940s.

(2) Underlying Principles of Operation

The underlying principle of chemical precipitation is that metals in wastewater are removed by the addition of a treatment chemical that converts the dissolved metal to a metal precipitate. This precipitate is less soluble than the original metal compound, and therefore settles out of solution, leaving a lower concentration of the metal present in the solution. The principal chemicals used to convert soluble metal compounds to

TABLE 3-12 ANALYTICAL RESULTS FOR UNTREATED K101 KILN ASH - Sample Sets 2A, 2B, and 1 a

		Untreate	ed Waste		ed Waste	•	ed Waste	
	Sample Location	(Kiln	Ash)	(Kiln		•	n Ash)	
	(EPA Sample Number)	(2)	1)	(2	B)	(1)		
		TOTAL	TCLP	TOTAL	TCLP	TOTAL	TCLP	
		(mg/kg)	(mg/l)	(mg/kg)	(mg/l)	(mg/kg)	(mg/l)	
BDAT	LISTED							
	Metals							
154	Antimony	104	0.377	88	0.462	87	0.204	
155	Arsenic	360	0.656	244	0. <i>7</i> 30	355	0.376	
156	Barium	294	0.485	288	0.537	289	0.594	
157	Beryllium	0.56	<0.001	0.54	<0.001	0.52	0.001	
158	Cadmium	<0.50	0.0088	<0.50	0.0094	<0.50	0.005	
159	Chromium	232	0.143	206	0.127	261	0.232	
160	Copper	554	1.30	540	1.060	417	1.030	
161	Lead	6.3	0.009	7.2	<0.0005	8.2	<0.005	
162	Mercury	<0.1	<0.0002	<0.1	<0.0002	<0.1	<0.000	
163	Nickel	297	0.450	265	0.379	262	0.366	
164	Selenium	, <0.5	<0.005	<0.5	<0.010	<0.5	<0.025	
165	Silver	0.86	<0.007	<0.70	<0.007	<0.70	<0.007	
166	Thallium	' <1.0	<0.010	<1.0	<0.010	<1.0	<0.010	
167	Vanadium	, 31	0.014	30	0.020	27	0.025	
168	Zinc	173	0.323	166	0.391	132	0.293	
	Inorganic							
171	l Sulfide	13.6	NA	16.9	NA	20.5	NA	
NON-	BDAT LISTED							
	Chlorides	8.7	NA	11.1	NA	11.0	NA	
	Sulfate	148	NA	172	NA	193	NA	
	Total Organic Carbon	267**	NA	795**	NA	2,130**	NA	

a - Obtained from the Onsite Engineering Report, John Zink Company, Tulsa, Oklahoma for K101, Table 5-7.

^{** -} This is an average of four results for Total Organic Carbon analysis on same sample.

NA - Not analyzed.

TABLE 3-13 ANALYTICAL RESULTS FOR UNTREATED K102 KILN ASH - Sample Sets 1, 2, 3, and 4 $^{\mathrm{a}}$

					Untreate					
		(Kiln Ash) Sample Set 1 Sample Set 2 Sample Set 3 Sample Set 4								
		Total TCLP		Total TCLP Total			TCLP	Total	TCLP	
		(mg/kg)	(mg/l)	(mg/kg)	(mg/l)	(mg/kg)	(mg/l)	(mg/kg)	(mg/l)	
BDAT L	ISTED									
	Metals									
154	4 Antimony	369	8.02	349	8.140	1990	16.3	203	9.73	
155		633	8.69	844	14.3	1060	17.1	1,080	38.3	
156	6 Barium	39	0.206	32	0.218	30	0.273	15	0.241	
157		<0.1	<0.001	<0.1	<0.001	<0.1	<0.001	<0.1	<0.001	
158		1.3	0.020	1.4	0.029	4.2	0.059	<0.5	0.084	
159	9 Chromium	32	0.019	42	0.0052	12	<0.007	15	0.286	
160) Copper	42	0.343	46	0.103	36	0.048	8.7	0.0082	
161		11	<0.005	10.5	<0.005	<0.5	0.0056	1.7	<0.005	
162	2 Mercury	0.12	<0.0002	<0.1	<0.0002	<0.1	<0.0002	<0.1	0.0002	
163	3 Nickel	56	0.370	76	0.541	35	0.383	9.1	0.428	
164	Selenium	8.0	<0.050	6.7	0.054	7.6	0.036	13	<0.005	
165	5 Silver	<0.7	<0.007	<0.7	<0.007	<0.7	<0.007	<0.7	<0.007	
166	S Thallium	<5.0	<0.500	<1.0	<0.200	<1.0	<0.200	<1.0	<0.100	
167	7 Vanadium	4.3	<0.004	3.4	<0.004	2.5	<0.004	0.73	<0.004	
168	3 Zinc	24	0.285	21	0.526	12	0.577	2.3	0.214	
,	Inorganics									
171	l Sulfide	7.0	NA	6.4	NA	7.9	NA	8.7	NA	
ION - BD A	AT LISTED									
	Chlorides	83.9	NA	89.3	NA	103	NA	71.5	NA	
	Sulfate	12.0	NA	21.4	NA	18.8	NA	55.9	NA	
	Total Organic Carbon	22,400***	NA	24,200***	NA	36,700***	NA	422,000***	NA.	

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K102. Tables 5-3 through 5-6.

^{*** -} This an average of four results for total organic carbon analysis on same sample.

NA - Not analyzed.

TABLE 3-14 ANALYTICAL RESULTS FOR UNTREATED FOO6 WASTE

		Total Concentration in Raw Waste Sample - F006 (ppm)									
	#1	#2	#3	#4	#5	#6	#7	#8	#9		
OAT CONSTITUENT											
Barium			85.5		14.3	••		15.3	19.		
Cadmium	••	31.3	67.3	1.31	720	7.28	5.39	5.81			
Chromium		755	716		12,200	3,100	42,900	**			
Copper		7,030		1,510	160	1,220	10,600	17,600	27,400		
Lead		409	257	88.5	52	113	156	1.69	24,500		
Nickel	435	989	259	374	701	19,400	13,000	23,700	5,730		
Silver		6.62	38.9	9.05	5.28	4.08	12.5	8.11			
Zinc	1,560	4,020	631	90,200	35,900	27,800	120	15,700	322		

^{1 -} Wastewater treatment sludge cake - no free liquid.

Source: CWM Technical Note 87-117.

^{2 -} Site closure excavation mud at auto part manufacturer. The waste sample is a mixture of F006 and F007.

^{3 -} Waste treatment sludge from aircraft overhaul facility. The waste sample is a mixture of F006, D006, D007, and D008.

^{4 -} Zinc electroplating sludge.

^{5 -} Filter cake from electroplating wastewater treatment.

^{6 -} Sludge from treatment of Cr, Cu, Ni, and Zn plating.

^{7 -} Wastewater treatment sludge from plating on plastics.

^{8 -} Wastewater treatment sludge.

^{9 -} To be provided

TABLE 3-14 ANALYTICAL RESULTS FOR UNTREATED FOO6 WASTE (Continued)

		TCLP Concentration in Raw Waste Sample - F006 (ppm)										
	#1	#2	#3	#4	#5	#6	#7	#8	#9			
T CONSTITUENT												
Barium			1.41		0.38			0.53	0.2			
Cadmium		2.21	1.13	0.02	23.6	0.3	0.06	0.18				
Chromium		0.76	0.43		25.3	38.7	360					
Copper		368		4.62	1.14	31.7	8.69	483	16.9			
Lead		10.7	2.26	0.45	0.45	3.37	1.0	4.22	50.2			
Nickel	0.71	22.7	1.1	0.52	9.78	73 0	152	644	16.1			
Silver		0.14	0.20	0.16	0.08	0.12	0.05	0.31				
Zinc	0.16	219	5.41	2,030	867	1,200	0.62	650	1.2			

^{1 -} Wastewater treatment sludge cake - no free liquid.

Source: CWM Technical Note 87-117.

^{2 -} Site closure excavation mud at auto part manufacturer. The waste sample is a mixture of F006 and F007.

^{3 -} Waste treatment sludge from aircraft overhaul facility. The waste sample is a mixture of F006, D006, D007, and D008.

^{4 -} Zinc electroplating sludge.

^{5 -} Filter cake from electroplating wastewater treatment.

^{6 -} Sludge from treatment of Cr, Cu, Ni, and Zn plating.

^{7 -} Wastewater treatment sludge from plating on plastics.

^{8 -} Wastewater treatment sludge.

^{9 -} To be provided

TABLE 3-15 ANALYTICAL RESULTS FOR TREATED FOO6 WASTE

	#1	#2	#3	#4	#5	#6	#7	#8	#9
Mix Ratio	0.2	0.5	0.2	1.0	0.5	0.5	0.2	0.5	0.5
T CONSTITUENT									
Barium	••		0.33		0.23			0.27	0.0
Cadmium		0.01	0.06	0.01	0.01	0.01	0.01	0.01	
Chromium		0.39	0.08		0.30	0.38	1.21		
Copper	••	0.25		0.15	0.27	0.29	0.42	0.32	0.4
Lead		0.36	0.30	0.21	0.34	0.36	0.38	0.37	0.2
Nickel	0.04	0.03	0.23	0.02	0.03	0.04	0.10	0.04	0.0
Silver		0.05	0.20	0.03	0.04	0.06	0.05	0.05	
Zinc	0.03	0.01	0.05	0.01	0.04	0.03	0.02	0.02	<0.0

- 1 Wastewater treatment sludge cake no free liquid.
- 2 Site closure excavation mud at auto part manufacturer. The waste sample is a mixture of F006 and F007.
- 3 Waste treatment sludge from aircraft overhaul facility. The waste sample is a mixture of F006, D006, D007, and D008.
- 4 ~ Zinc electroplating sludge.
- 5 Filter cake from electroplating wastewater treatment.
- 6 Sludge from treatment of Cr, Cu, Ni, and Zn plating.
- 7 Wastewater treatment sludge from plating on plastics.
- 8 Wastewater treatment sludge.
- 9 To be provided

Source: CWM Technical Note 87-117.

TABLE 3-16 CEMENT KILN DUST COMPOSITION DATA

Constituent	Concentration in mg/l		
	Composition	TCLP/EP*	Other Characteristics
Aluminum	31,000	NA NA	
Arsenic	38	<0.01	
Barium	92.7	2.74	
Cadmium	3.14	<0.01	
Chromium (total)	31.9	0.05	
Copper	44.8	0.16	
Iron (total)	15,200	NA	
Lead	156	0.29	
Magnesium	3,790	NA	
Mercury	<0.033	<0.001	
Nickel	12.6	0.02	
Selenium	8.67	0.03	
Silver	4.13	0.02	
Zinc	65.6	0.04	
Sodium	2300	NA	
Potassium	33,100	NA	
Calcium	41,900	NA	
Total Sulfide ppm			<8
Asri content %			99.8
Total residue @ 105 c%			100
Alkalinity as CAO%			56.16
pH 10% solution			12.55

NA - Not reported.

Source: Special Waste Analysis Report dated June 15, 1987 provided be Chemical Waste Management, Technical Center.

 $[\]star$ - In the process of checking with CWM for the type of analysis performed.

the less soluble forms include: lime $(Ca(OH)_2)$, caustic (NaOH), sodium sulfide (Na_2S) , and, to a lesser extent, soda ash (Na_2CO_3) , phosphate, and ferrous sulfide (FeS).

The solubility of a particular compound will depend on the extent to which the electrostatic forces holding the ions of the compound together can be overcome. The solubility will change significantly with temperature; most metal compounds are more soluble as the temperature increases. Additionally, the solubility will be affected by the other constituents present in a waste. As a general rule, nitrates, chlorides, and sulfates are more soluble than hydroxides, sulfides, carbonates, and phosphates.

An important concept related to treatment of the soluble metal compounds is pH. This term provides a measure of the extent to which a solution contains either an excess of hydrogen or hydroxide ions. The pH scale ranges from 0 to 14; with 0 being the most acidic, 14 representing the highest alkalinity or hydroxide ion (OH⁻) content, and 7.0 being neutral.

When hydroxide is used, as is often the case, to precipitate the soluble metal compounds, the pH is frequently monitored to ensure that sufficient treatment chemicals are added. It is important to point out that pH is not a good measure of treatment chemical addition for compounds other than hydroxides; when

sulfide is used, for example, facilities might use an oxidation-reduction potential meter (ORP) correlation to ensure that sufficient treatment chemical is used.

Following conversion of the relatively soluble metal compounds to metal precipitates, the effectiveness of chemical precipitation is a function of the physical removal, which usually relies on a settling process. A particle of a specific size, shape, and composition will settle at a specific velocity, as described by Stokes' Law. For a batch system, Stokes' law is a good predictor of settling time because the pertinent particle parameters remain essentially constant. Nevertheless, in practice, settling time for a batch system is normally determined by empirical testing. For a continuous system, the theory of settling is complicated by factors such as turbulence, short-circuiting, and velocity gradients, increasing the importance of the empirical tests.

(3) Description of the Technology

The equipment and instrumentation required for chemical precipitation varies depending on whether the system is batch or continuous. Both operations are discussed below; a schematic of the continuous system is shown in Figure 3-5.

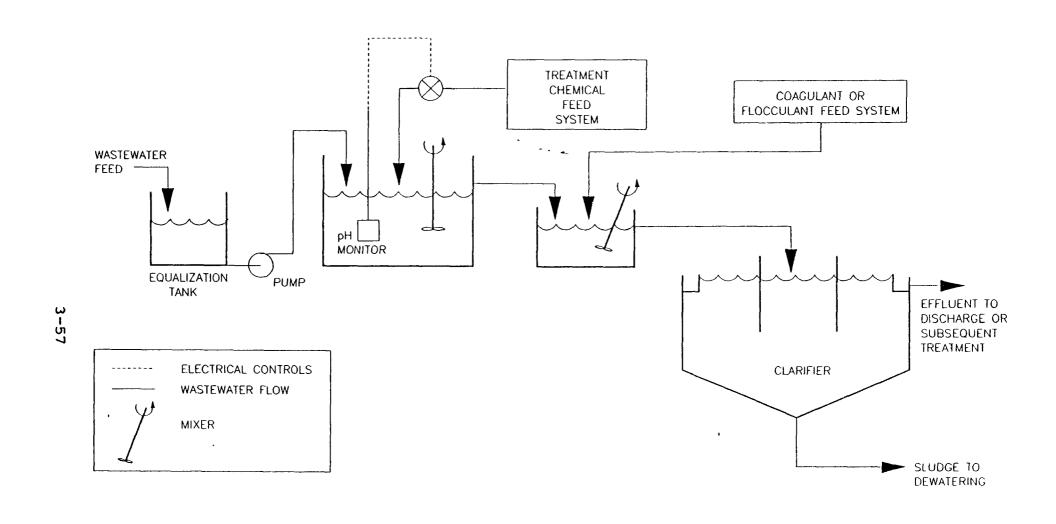
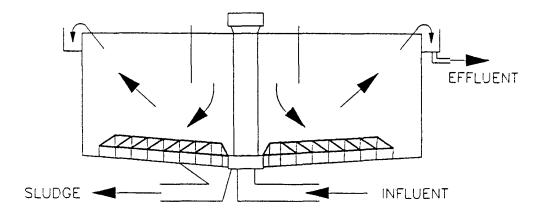
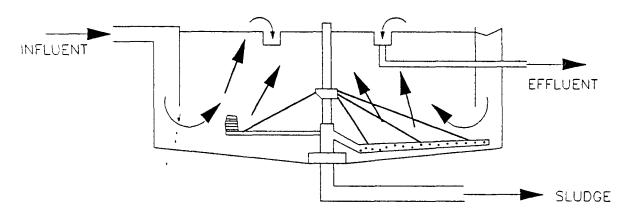


FIGURE 3-5 CONTINUOUS CHEMICAL PRECIPITATION

For a batch system, chemical precipitation requires only a feed system for the treatment chemicals and a second tank where the waste can be treated and allowed to settle. When lime is used, it is usually added to the reaction tank in a slurry form. In a batch system, the supernate is usually analyzed before discharge, thus minimizing the need for instrumentation.


In a continuous system, additional tanks are necessary, as well as instrumentation to ensure that the system is operating properly. In this system, the first tank that the wastewater enters is referred to as an equalization tank. This is where the waste can be mixed in order to provide more uniformity, minimizing wide swings in the type and concentration of constituents being sent to the reaction tank. It is important to reduce the variability of the waste sent to the reaction tank because control systems inherently are limited with regard to the maximum fluctuations that can be managed.

Following equalization, the waste is pumped to a reaction tank where treatment chemicals are added; this is done automatically by using instrumentation that senses the pH of the system and then pneumatically adjusts the position of the treatment chemical feed valve such that the design pH value is achieved. Both the complexity and the effectiveness of the automatic control system will vary depending on the variation in


the waste and the pH range that is needed to properly treat the waste.

An important aspect of the reaction tank design is that it be well-mixed so that the waste and the treatment chemicals are both dispersed throughout the tank, in order to ensure commingling of the reactant and the treatment chemicals. In addition, effective dispersion of the treatment chemicals throughout the tank is necessary to properly monitor and, thereby, control the amount of treatment chemicals added.

After the waste is reacted with the treatment chemical, it flows to a quiescent tank where the precipitate is allowed to settle and subsequently be removed. Settling can be chemically assisted through the use of flocculating compounds. Flocculants increase the particle size and density of the precipitated solids, both of which increase the rate of settling. The particular flocculating agent that will best improve settling characteristics will vary depending on the particular waste; selection of the flocculating agent is generally accomplished by performing laboratory bench tests. Settling can be conducted in a large tank by relying solely on gravity or be mechanically assisted through the use of a circular clarifier or an inclined separator. Schematics of the latter two separators are shown in Figures 3-6 and 3-7.

CENTER FEED CLARIFIER WITH SCRAPER SLUDGE REMOVAL SYSTEM

RIM FEED - CENTER TAKEOFF CLARIFIER WITH HYDRAULIC SUCTION SLUDGE REMOVAL SYSTEM

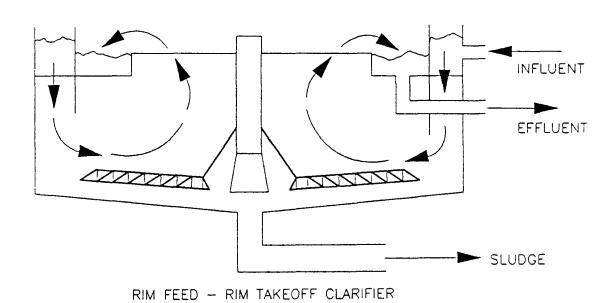


FIGURE 3-6 CIRCULAR CLARIFIERS

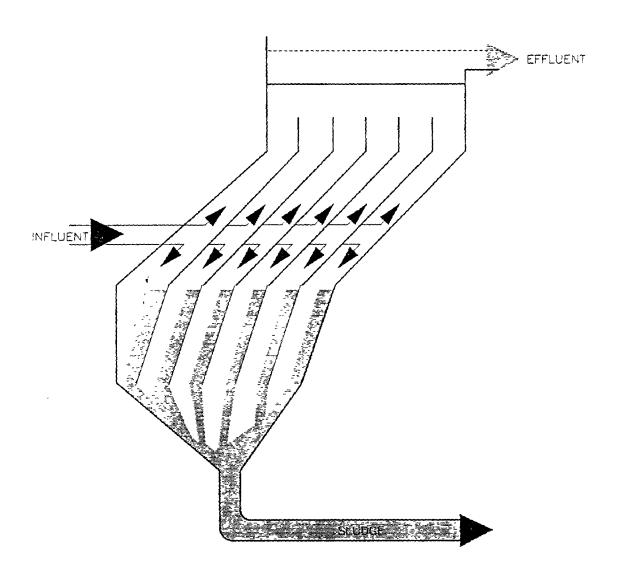


FIGURE 3-7
INCLINED PLATE SETTLER

Filtration can be used for further removal of precipitated residuals both in cases where the settling system is underdesigned and in cases where the particles are difficult to settle. Polishing filtration is discussed in a separate technology section.

(4) Waste Characteristics Affecting Performance

In determining whether chemical precipitation is likely to achieve the same level of performance on an untested waste as a previously tested waste, we will examine the following waste characteristics: (i) the concentration and type of the metal(s) in the waste, (ii) the concentration of suspended solids (TSS), (iii) the concentration of dissolved solids (TDS), (iv) whether the metal exists in the wastewater as a complex, and (v) the oil and grease content. These parameters either affect the chemical reaction of the metal compound, the solubility of the metal precipitate, or the ability of the precipitated compound to settle.

(i) Concentration and type of metals. For most metals, there is a specific pH at which the metal hydroxide is least soluble. As a result, when a waste contains a mixture of many metals, it is not possible to operate a treatment system at a single pH which is optimal for the removal of all metals. The extent to which this affects treatment depends on the particular

metals to be removed, and their concentrations. An alternative can be to operate multiple precipitations, with intermediate settling, when the optimum pH occurs at markedly different levels for the metals present. The individual metals and their concentrations can be measured using EPA Method 6010.

- (ii) Concentration and type of total suspended solids

 (TSS). Certain suspended solid compounds are difficult to settle because of either their particle size or shape. Accordingly, EPA will evaluate this characteristic in assessing transfer of treatment performance. Total suspended solids can be measured by EPA Wastewater Test Method 160.2. The amount of total suspended solids present in the K101 and K102 wastewaters are 289 to 1,620 mg/l and 1,980 to 6,140 mg/l, respectively.
- (iii) Concentration of total dissolved solids (TDS).

 Available information shows that total dissolved solids can inhibit settling. The literature states that poor flocculation is a consequence of high TDS and shows that higher concentrations of total suspended solids are found in treated residuals. Poor flocculation can adversely affect the degree to which precipitated particles are removed. Total dissolved solids can be measured by EPA Wastewater Test Method 160.1. The amount of total dissolved solids present in the K101 and K102 wastewaters are 8,460 to 23,600 mg/l and 1,930 to 2,620 mg/l, respectively.

- (iv) Complexed metals. Metal complexes consist of a metal ion surrounded by a group of other inorganic or organic ions or molecules (often called ligands). In the complexed form, the metals have a greater solubility and, therefore, may not be as effectively removed from solution by chemical precipitation. EPA does not have an analytical method to determine the amount of complexed metals in the waste. The Agency believes that the best measure of complexed metals is to analyze for some common complexing compounds (or complexing agents) generally found in wastewater for which analytical methods are available. These complexing agents include ammonia, cyanide, and EDTA. The analytical method for cyanide is EPA Method 9010. The method for EDTA is ASTM Method D3113. Ammonia can be analyzed using EPA Wastewater Test Method 350.
- (v) Oil and grease content. The oil and grease content of a particular waste directly inhibits the settling of the precipitate. Suspended oil droplets float in water and tend to suspend particles such as chemical precipitates that would otherwise settle out of the solution. Even with the use of coagulants or flocculants, the separation of the precipitate is less effective. Oil and grease content can be measured by EPA Method 9071.

(5) Design and Operating Parameters

The parameters that EPA will evaluate when determining whether a chemical precipitation system is well designed are:

(1) design value for treated metal concentrations, as well as other characteristics of the waste used for design purposes

(e.g., total suspended solids), (2) pH, (3) residence time,

(4) choice of treatment chemical, and (5) choice of coagulant/flocculant. Below is an explanation of why EPA believes these parameters are important to a design analysis; in addition, EPA explains why other design criteria are not included in EPA's analysis.

(1) Treated and untreated design concentrations. EPA pays close attention to the treated concentration the system is designed to achieve when determining whether to sample a particular facility. Since the system will seldom out-perform its design, EPA must evaluate whether the design is consistent with best demonstrated practice.

The untreated concentrations that the system is designed to treat are important in evaluating any treatment system.

Operation of a chemical precipitation treatment system with untreated waste concentrations in excess of design values can easily result in poor performance.

- (2) pH. The pH is important, because it can indicate that sufficient treatment chemical (e.g., lime) is added to convert the metal constituents in the untreated waste to forms that will precipitate. The pH also affects the solubility of metal hydroxides and sulfides, and therefore directly impacts the effectiveness of removal. In practice, the design pH is determined by empirical bench testing, often referred to as "jar" testing. The temperature at which the "jar" testing is conducted is important in that it also affects the solubility of the metal precipitates. Operation of a treatment system at temperatures above the design temperature can result in poor performance. In assessing the operation of a chemical precipitation system, EPA prefers continuous data on the pH and periodic temperature conditions throughout the treatment period.
- (3) Residence time. The residence time is important because it impacts the completeness of the chemical reaction to form the metal precipitate and, to a greater extent, amount of precipitate that settles out of solution. In practice, it is determined by "jar" testing. For continuous systems, EPA will monitor the feed rate to ensure that the system is operated at design conditions. For batch systems, EPA will want information on the design parameter used to determine sufficient settling time (e.g., total suspended solids).

- (4) Choice of treatment chemical. A choice must be made as to what type of precipitating agent (i.e., treatment chemical) will be used. The factor that most affects this choice is the type of metal constituents to be treated. Other design parameters, such as pH, residence time, and choice of coagulant/flocculant agents, are based on the selection of the treatment chemical.
- (5) Choice of coagulant/flocculant. This is important because these compounds improve the settling rate of the precipitated metals and allows for smaller systems (i.e., lower retention time) to achieve the same degree of settling as a much larger system. In practice, the choice of the best agent and the required amount is determined by "jar" testing.
- (6) Mixing. The degree of mixing is a complex assessment which includes, among other things, the energy supplied, the time the material is mixed, and the related turbulence effects of the specific size and shape of the tank. EPA will, however, consider whether mixing is provided and whether the type of mixing device is one that could be expected to achieve uniform mixing. For example, EPA may not use data from a chemical precipitation treatment system where an air hose was placed in a large tank to achieve mixing.

(6) Chemical Precipitation Performance Data

Performance data for chemical precipitation of K101 and K102 scrubber waters was not collected by EPA. Therefore, performance data will be transferred from the data obtained for the chemical precipitation of D004 waste. Tables 3-17 and 3-18 present analytical data for K101 and K102 scrubber water. The scrubber water was analyzed for BDAT list metals and other parameters that affect the precipitation process. The analytical results and operating data for the treatment of D004 by precipitation are shown in Tables 3-19 to 3-23.

TABLE 3-17 ANALYTICAL RESULTS FOR UNTREATED K101 SCRUBBER WATER $^{\mathbf{a}}$

				Untreated Sc	rubber Water	
			Sample Set 1	Sample Set 2	Sample Set 3	Sample Set
			Total	Total	Total	Total
			(mg/l)	(mg/l)	(mg/l)	(mg/l)
T LIS	STED					
	Metals					
154	Antimony		404	296	136	137
155	Arsenic		426	504	307	91.7
156	Barium		0.425	0.462	0.447	0.480
157	Beryllium		<0.001	<0.001	<0.001	<0.001
158	Cadmium		<0.050	<0.500	<0.005	<0.500
159	Chromium		1.120	1.71	1.16	0.962
160	Copper		3.170	7.13	3.97	3.56
161	Lead		3.620	3.87	2.00	1.97
162	Mercury		0.040	0.109	0.069	0.0057
163	Nickel		0.649	1.210	0.907	0.983
164	Selenium		0.389	0.121	<0.050	<0.500
165	Silver		0.048	<0.007	<0.070	<0.070
166	Thallium		0.377	0.167	0.056	0.037
167	Vanadium	↓	0.027	0.058	0.036	0.038
168	Zinc	:	10.9	19.3	13.8	14.8
I-BDAT	LISTED	•				
	Total Solids	i.	10,400	32,000	18,500	22,600
	Total Suspen	ded Solids	1,620	914	289	373
	Total Dissol	ved Solids	8,460	23,600	17,700	21,100

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101. Tables 5-3 through 5-6.

TABLE 3-18 ANALYTICAL RESULTS FOR UNTREATED K102 SCRUBBER WATER a

				Untreated Sc	rubber Water		
		Sample Set 1	Sample Set 2	Sample Set 3	Sample Set 4	Sample Set 5	Sample Set 6
		Total	Total	Total	Total	Total	Total
		(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
DAT LIS	STED.		-	- ·			
	Metals						
154	Antimony	591	513	627	489	291	712
155	Arsenic	341	495	641	663	668	713
156	Barium	0.207	0.198	0.375	0.560	0.648	0.323
157	Beryllium	<0.010	<0.001	<0.001	0.0017	0.0018	0.002
158	Cadmium	0.671	0.834	2.8	0.887	0.436	0.283
159	Chromium	0.606	0.372	0.379	0.410	0.606	0.565
160	Copper	1.120	1.170	1.220	1.310	1.690	1.490
161	Lead	0.245	0.081	0.132	0.567	0.323	<0.005
162	Mercury	0.018	0.022	0.036	0.053	0.036	0.041
163	Nickel	<0.220	<0.220	<0.220	0.092	0.228	0.018
164	Setenium	0.131	0.170	0.413	0.223	0.170	0.119
165	Silver	0.007	0.0099	0.011	0.013	0.016	0.014
166	Thallium	0.246	0.370	0.562	0.449	0.417	0.417
167	Vanadium	0.032	0.040	0.034	0.023	0.025	0.028
168	Zinc	1.280	1.230	1.340	1.460	1.850	1.790
ON-BDAT	LISTED						
	Total Solids	6,200	5,130	5,380	8,260	8,920	9,160
	Total Suspended Solids	1,980	2,910	4,440	6,290	6,210	6,410
	Total Dissolved Solids	1,930	2,610	2,550	2,620	2,530	2,370

a - Obtained from the Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K102. Tables 5-3 through 5-8.

TABLE 3-19 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION a

SAMPLE SET 1

	UNTREATED WA	STE TREATED WASTI
	Basin #5 B	asin #6
DAT LIST		
Metals (mg/l)		
154 Antimony	3.740	2.9 <0.640
155 Arsenic	826 - 1,2	60 0.415
156 Barium	<0.020	0.025 <0.200
157 Beryllium	0.021	<0.020 <0.020
158 Cadmium	2.990	3.980 <0.080
159 Chromium	<0.140	<0.140 <0.140
160 Copper	<1.2	<1.200 0.266
161 Lead	0.044	0.298 <0.005
162 Mercury	0.019	0.036 0.0014
163 Nickel	<0.220	<0.220 <0.220
164 Selenium 🕝	<0.025	<0.050 <0.050
165 Silver	<0.120	<0.120 <0.120
166 Thallium '	<0.100	<0.010 <0.010
167 Vanadium	<0.120	<0.120 <0.120
168 Zinc	0.473	1.220 0.709

TABLE 3-19 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION a (Continued)

SAMPLE SET 1

OPERATING PARAMETERS	DESIGN VALUE	OPERATING RANGE		
Calcium Hydroxide Precipitator:		Basin #5	Basin #6	
Total and the America Control of the	500 F 000	*************		
Incoming Waste Arsenic Content (ppm)	500 - 5,000	826	1,260	
Untreated Waste pH	2 - 8	10.94	4.04	
Molar Ratio of Treatment Chemical				
to Arsenic	1.5:1 Min.	1.5	2.2	
Mixing Time (min)	15 - 30	25	30	
Amount of Flocculant Added (gal)	2 - 5	5	3	
Waste Volume (gal)	8,000	8,850	8,030	
Treated Waste pH	11.2 - 11.5	12.18	12.34	
Reaction Temperature (C)	Ambient	27.1	28.1	
Manganese Sulfate Precipitator:				
Incoming Waste Arsenic Content (ppm)	100 - 1,000	14	3	
Untreated Waste pH	11.2 - 11.5	12.01		
Amount of Chemical Treatment Added (lbs)	495	495		
Molar Ratio of Treatment Chemical				
to Arsenic	1.2:1 - 12:1	9.5		
Mixing Time (min)	30	35		
Amount of Flocculant Added (gal)	3 - 5	5		
Waste Volume (gal)	16,200	16,	200	
Treated Waste pH	8.0 - 8.5		39	
Reaction Temperature (°C)	Ambient	25	.6	
Ferric Sulfate Precipitator:				
Incoming Waste Arsenic Content (ppm)	10 - 100	23	.4	
Untreated Waste pH	8.0 - 8.5	7.	42	
Amount of Chemical Treatment Added (lbs)	50 lbs/10 ppm* Arsenic	10	0	
Molar Ratio of Treatment Chemical	AI SEITE			
to Arsenic	9:1	8.	8	
Mixing Time (min)	30	3	0	
Amount of Flocculant Added (gal)	3 - 5	5		
Waste Volume (gal)	16,000	15,	700	
Treated Waste pH	4.4 - 4.6	3.	79	
Reaction Temperature (°C)	Ambient	32	9	

^{*}Plant experience is normally used in chemical addition with color of incoming waste being the indicator.

a - Obtained from Onsite Engineering Report for Salsbury Laboratories for D004, Tables 3-1 through 3-3.

TABLE 3-20 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION a

	UNTREAT	ED WASTE	TREATED WASTE
	Basin #5	Basin #6	
DAT LIST			
Metals (mg/l)			
154 Antimony	1.090	1.460	<0.640
155 Arsenic	427	960	2.000
156 Barium	0.325	<0.020	0.032
157 Beryllium	<0.020	<0.020	<0.020
158 Cadmium	1.090	3.080	<0.080
159 Chromium	<0.140	<0.140	<0.140
160 Copper	<0.120	<1.200	0.321
161 Lead	0.075	<0.005	0.029
162 Mercury	0.076	0.142	0.0043
163 Nickel	<0.220	<0.220	<0.220
164 Selenium	<0.025	<0.025	<0.050
165 Silver	<0.120	<0.120	<0.120
166 Thallium	<0.010	<0.010	0.011
167 Vanadium	<0.120	<0.120	<0.120
168 Zinc	1.000	0.749	1.150

TABLE 3-20 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF D004 BY CHEMICAL PRECIPITATION a (Continued)

SAMPLE SET 2

OPERATING PARAMETERS	DESIGN VALUE	OPERATING RANGE		
Calcium Hydroxide Precipitator:		Basin #5	Basin #6	
Incoming Waste Arsenic Content (ppm)	500 - 5,000	427	960	
Untreated Waste pH	2 - 8	7.06	2.17	
Molar Ratio of Treatment Chemical				
to Arsenic	1.5:1 Min.	4.8	1.5	
Mixing Time (min)	15 - 30	25	20	
Amount of Flocculant Added (gal)	2 - 5	3	2	
Waste Volume (gal)	8,000	7,950	7,650	
Treated Waste pH	11.2 - 11.5	12.82	11.96	
Reaction Temperature (°C)	Ambient	27.0	35.2	
Manganese Sulfate Precipitator:				
Incoming Waste Arsenic Content (ppm)	100 - 1,000	14	7	
Untreated Waste pH	11.2 - 11.5	11.80		
Amount of Chemical Treatment Added (lbs)	495	495		
Molar Ratio of Treatment Chemical				
to Arsenic	1.2:1 - 12:1	11.2		
Mixing Time (min)	30	30		
Amount of Flocculant Added (gal)	3 - 5	5		
Waste Volume (gal)	16,200	13,400		
Treated Waste pH	8.0 - 8.5	8.	06	
Reaction Temperature (°C)	Ambient	27	.6	
Ferric Sulfate Precipitator:				
Incoming Waste Arsenic Content (ppm)	10 - 100	35	.9	
Untreated Waste pH	8.0 - 8.5	7.	60	
Amount of Chemical Treatment Added (lbs)	50 lbs/10 ppm* Arsenic	10	0	
Molar Ratio of Treatment Chemical				
to Arsenic	9:1	6.3		
dixing Time (min)	30	3		
Amount of Flocculant Added (gal)	3 - 5	5		
Waste Volume (gal)	16,000	14,	300	
Treated Waste pH	4.4 - 4.6	4.	17	
Reaction Temperature (°C)	Ambient	26	.4	

^{*}Plant experience is normally used in chemical addition with color of incoming waste being the indicator.

a - Obtained from Onsite Engineering Report for Salsbury Laboratories for D004, Tables 3-1 through 3-3.

TABLE 3-21 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF D004 BY CHEMICAL PRECIPITATION a

SAMPLE SET 3

UNTREATED WASTE TREATED WASTE
Basin #5 Basin #6

BDAT LIST Metals (mg/l) 154 Antimony 0.914 4.110 <0.640 155 Arsenic 0.513 1,280 706 156 Barium 0.269 <0.020 <0.020 157 Beryllium <0.020 <0.020 <0.020 158 Cadmium 3.250 2.590 <0.080 159 Chromium <0.140 <0.140 <0.140 160 Copper <0.120 <0.120 0.267 161 Lead 0.279 0.078 0.025 162 Mercury 0.112 0.0094 0.190 163 Nickel <0.220 <0.220 <0.220 164 Selenium <0.050 <0.005 <0.050 165 Silver <0.120 <0.120 <0.120 166 Thallium <1.000 <0.010 <0.010 167 Vanadium <0.120 <0.120 <0.120 168 Zinc 0.617 1.170 0.743

TABLE 3-21 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION (Continued)

SAMPLE SET 3

OPERATING PARAMETERS	DESIGN VALUE	OPERATING RANGE		
Calcium Hydroxide Precipitator:		Basin #5	Basin #6	
				
Incoming Waste Arsenic Content (ppm)	500 - 5,000	1,280	706	
Untreated Waste pH	2 - 8	2.01	7.61	
Molar Ratio of Treatment Chemical				
to Arsenic	1.5:1 Min.	2.0	1.8	
Mixing Time (min)	15 - 30	25	30	
Amount of Flocculant Added (gal)	2 - 5	5	5	
Waste Volume (gal)	8,000	8,700	8,100	
Treated Waste pH	11.2 - 11.5	12.09	12.31	
Reaction Temperature (C)	Ambi ent	30.8	41.7	
Manganese Sulfate Precipitator:				
Incoming Waste Arsenic Content (ppm)	100 - 1,000	205		
Untreated Waste pH	11.2 - 11.5	12.41		
Amount of Chemical Treatment Added (lbs)	495	495		
Molar Ratio of Treatment Chemical				
to Arsenic	1.2:1 - 12:1	7.0		
Mixing Time (min)	30	30		
Amount of Flocculant Added (gal)	3 - 5	5		
Waste Volume (gal)	16,200	15,	400	
Treated Waste pH	8.0 - 8.5	7.		
Reaction Temperature (°C)	· Ambient	30	.9	
Ferric Sulfate Precipitator:				
Incoming Waste Arsenic Content (ppm)	10 - 100	15	.0	
Untreated Waste pH	8.0 - 8.5	7.	17	
Amount of Chemical Treatment Added (lbs)	50 lbs/10 ppm*	10	0	
Molar Ratio of Treatment Chemical	Arsenic			
to Arsenic	9:1	13	.3	
Mixing Time (min)	30	3		
Amount of Flocculant Added (gal)	3 - 5	5	-	
Waste Volume (gal)	16,000	16,	200	
Treated Waste pH	4.4 - 4.6	4.		
Reaction Temperature (°C)	Ambient	29		

^{*}Plant experience is normally used in chemical addition with color of incoming waste being the indicator.

a - Obtained from Onsite Engineering Report for Salsbury Laboratories for D004, Tables 3-1 through 3-3.

TABLE 3-22 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOD4 BY CHEMICAL PRECIPITATION a

SAMPLE SET 4

	UNTREAT	ED WASTE	TREATED WASTE
	Basin #5	Basin #6	
BDAT LIST			
Metals (mg/l)			
154 Antimony	1.590	3.160	<0.640
155 Arsenic	1,340	399	0.418
156 Barium	0.270	0.251	0.035
157 Beryllium	<0.020	<0.020	<0.020
158 Cadmium	2.860	0.977	<0.080
159 Chromium	<0.140	<0.140	<0.140
160 Copper	<0.120	<0.120	0.240
161 Lead	0.478	<0.050	<0.010
162 Mercury	0.076	0.040	0.0039
163 Nickel	<0.220	<0.220	<0.220
164 Selenium	<0.025	<0.025	<0.050
165 Silver	<0.120	<0.120	<0.120
166 Thallium	<10	<0.010	<0.010
167 Vanadium	<0.120	<0.120	<0.120
168 Zinc	0.210	0.636	0.743

TABLE 3-22 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION (Continued)

SAMPLE SET 4

OPERATING PARAMETERS	DESIGN VALUE	OPERATING RANGE		
Calcium Hydroxide Precipitator:		Basin #5	Basin #6	
Incoming Waste Arsenic Content (ppm)	500 - 5,000	1,340	399	
Untreated Waste pH	2 - 8	6.46	12.12	
Molar Ratio of Treatment Chemical				
to Arsenic	1.5:1 Min.	2.2	5.8	
Mixing Time (min)	15 - 30	25	20	
Amount of Flocculant Added (gal)	2 - 5	3	5	
Waste Volume (gal)	8,000	7,280	7,130	
Treated Waste pH	11.2 - 11.5	11.84	12.86	
Reaction Temperature (°C)	Ambi ent	30.7	26.7	
Manganese Sulfate Precipitator:	`,			
Incoming Waste Arsenic Content (ppm)	100 - 1,000	12	5	
Untreated Waste pH	11.2 - 11.5	12.35		
Amount of Chemical Treatment Added (lbs)	495	495		
Molar Ratio of Treatment Chemical				
to Arsenic	1.2:1 - 12:1	10	.3	
Mixing Time (min)	30	35		
Amount of Flocculant Added (gal)	3 - 5	3		
Waste Volume (gal)	16,200	17.	500	
Treated Waste pH	8.0 - 8.5	•	49	
Reaction Temperature (°C)	Ambient	26	.8	
Ferric Sulfate Precipitator:				
Incoming Waste Arsenic Content (ppm)	10 - 100	26	5.5	
Untreated Waste pH	8.0 - 8.5	7.	49	
Amount of Chemical Treatment Added (lbs)	50 lbs/10 ppm* Arsenic	10	00	
Molar Ratio of Treatment Chemical	,,, ,,,,,,			
to Arsenic	9:1	7.	.2	
Mixing Time (min)	30	3	35	
Amount of Flocculant Added (gal)	3 - 5	5		
Waste Volume (gal)	16,000		,000	
Treated Waste pH	4.4 - 4.6		.12	
Reaction Temperature (C)	Ambient		5.2	

^{*}Plant experience is normally used in chemical addition with color of incoming waste being the indicator.

a - Obtained from Onsite Engineering Report for Salsbury Laboratories for D004, Tables 3-1 through 3-3.

TABLE 3-23 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION a

		UNTREATE	ED WASTE	TREATED WASTE
		Basin #5	Basin #6	
DAT LIST	<u></u>			
Metals (mg/l)				
154 Antimony		0.640	3.410	<0.640
155 Arsenic		1,670	717	0.440
156 Barium		0.509	0.226	0.037
157 Beryllium		<0.020	<0.020	<0.020
158 Cadmium		3.640	1.500	<0.080
159 Chromium		<0.140	<0.140	<0.140
160 Copper		<0.120	<0.120	0.506
161 Lead		0.371	0.197	<0.025
162 Mercury		0.0034	0.139	0.0061
163 Nickel	;	<0.22ऄ	<0.220	<0.220
164 Selenium		<0.025	<0.025	<0.100
165 Silver	•	<0.120	<0.120	<0.120
166 Thallium		<10	<10	<0.010
167 Vanadium		<0.120	<0.120	<0.120
168 Zinc		0.164	0.974	1.710

TABLE 3-23 ANALYTICAL RESULTS AND OPERATING DATA FOR TREATMENT OF DOO4 BY CHEMICAL PRECIPITATION a (Continued)

SAMPLE SET 5

OPERATING PARAMETERS	DESIGN VALUE	OPERATING RANGE		
Calcium Hydroxide Precipitator:		Basin #5	Basin #6	
Incoming Boots Argonic Content (ppm)	500 - 5,000	1,670	717	
Incoming Waste Arsenic Content (ppm)	2 - 8	1.79**	6.97	
Untreated Waste pH Molar Ratio of Treatment Chemical	2 - 0	1.17	0.77	
to Arsenic	1.5:1 Min.	1.3	2.1	
	15 - 30	25	30	
Mixing Time (min)	2 - 5	3	5	
Amount of Flocculant Added (gal)			_	
Waste Volume (gal)	8,000	7,280	7,130	
Treated Waste pH	11.2 - 11.5	12.02	11.86	
Reaction Temperature (°C)	Ambient	20.0	48.0	
Manganese Sulfate Precipitator:				
Incoming Waste Arsenic Content (ppm)	100 - 1,000	30	2	
Untreated Waste pH	11.2 - 11.5	11.93		
Amount of Chemical Treatment Added (lbs)	495	495		
Molar Ratio of Treatment Chemical				
to Arsenic	1.2:1 - 12:1	4.	7	
Mixing Time (min)	30	30		
Amount of Flocculant Added (gal)	3 - 5	. 5		
Waste Volume (gal)	16,200	15.	700	
Treated Waste pH	8.0 - 8.5	-	02	
Reaction Temperature (°C)	Ambient	33	3.7	
Ferric Sulfate Precipitator:				
Incoming Waste Arsenic Content (ppm)	10 - 100	107	7.0	
Untreated Waste pH	8.0 - 8.5	7.	.34	
Amount of Chemical Treatment Added (lbs)	50 lbs/10 ppm*	25	50	
	Arsenic			
Molar Ratio of Treatment Chemical				
to Arsenic	9:1	4.	.7	
Mixing Time (min)	30		40	
Amount of Flocculant Added (gal)	3 - 5		5	
Waste Volume (gal)	16,000		,000	
Treated Waste pH	4.4 - 4.6		.91	
Reaction Temperature (C)	Ambient		1.5	

^{*}Plant experience is normally used in chemical addition with color of incoming waste being the indicator.

^{**}This value was measured on a sample taken directly from the feed line to the basin.

a - Obtained from Onsite Engineering Report for Salsbury Laboratories for D004, Tables 3-1 through 3-3.

4. IDENTIFICATION OF BEST DEMONSTRATED AVAILABLE TREATMENT TECHNOLOGY FOR K101 AND K102

This section describes how the data collected by the Agency was evaluated to determine which demonstrated treatment technology system represents BDAT for waste codes K101 and K102. The previous section described applicable and demonstrated treatment technologies for waste codes K101 and K102, and the available performance data for these technologies. demonstrated treatment technology under consideration for nonwastewaters is rotary kiln incineration and metals stabilization of the kiln ash. The demonstrated treatment technology under consideration for wastewaters is chemical precipitation and metals stabilization of the nonwastewater precipitate. As discussed in Section 3, the Agency collected performance data for the treatment of K101 and K102 nonwastewaters from one treatment technology system: rotary kiln incineration. No additional performance data were available for the treatment of K101 and K102 wastewaters or nonwastewaters.

The topics covered in this section include descriptions of the data screening process employed, the methods used to ensure accuracy of the analytical data, and the analysis of variance (ANOVA) tests performed in identifying the best technology for the treatment of K101 and K102 wastes. In general, performance data are screened according to the following three conditions:

- o proper design and operation of the treatment system;
- o the existence of quality assurance/quality control measures in the data analysis; and
- o the use of proper analytical tests in assessing treatment performance.

Sets of performance data which do not meet these three conditions are not considered in the selection of BDAT. In addition, if performance data indicate that the treatment system was not well-designed and well-operated at the time of testing, these data would also not be used.

The remaining performance data are then corrected to account for incomplete recovery of certain constituents during the analyses. Finally, in cases where the Agency has adequate performance data for treatment of the waste by more than one technology, an analysis of variance (ANOVA) test is used to select the best treatment technology.

4.1 Review of Performance Data

4.1.1 Nonwastewaters

Six data sets were collected by the Agency for treatment of waste code K102 and four data sets were collected by the Agency for treatment of K101, both by rotary kiln incineration. These

data sets are provided in Tables 3-1 through 3-12 in the preceding section. The data sets were evaluated to determine whether any of the data represented poor design or operation of the treatment systems. None of the data sets were deleted after evaluation. Of the six data sets in K102, insufficient ash was generated for sample sets 5 and 6. No ash was generated out of the four data sets in K101. Therefore, three ash samples from the kiln walls were substituted for the treated waste samples in K101. Insufficient ash was generated during the incineration of K101 and K102, therefore, stabilization of the ash could not be performed. In addition, no performance data were available for treatment of the resulting scrubber water.

Performance data were not collected for metals stabilization of the incinerator ash or the scrubber water precipitate for K101 and K102. The Agency will, therefore, consider performance data for K101 and K102 which has been transferred from similar wastes based on waste characteristics affecting performance. The available data collected by the Agency for F006 was used as performance data for stabilization of the K101 and K102 incinerator ash and precipitate residuals. These data were evaluated to determine whether any of the data represented poor design or operation of the system. Nine of the available data sets were used for the development of treatment standards for nonwastewaters from K101 and K102.

Performance data for stabilization of the kiln ash can be found in the Background Document for F006.

4.1.2 Wastewaters

Performance data was not collected for chemical precipitation of K101 and K102 wastewaters. Five data sets from the treatment of D004 were collected by the Agency for chemical precipitation. The five data sets for D004 were transferred to the resulting K101 and K102 scrubber water based on waste characteristics affecting performance. None of the data sets in D004 were deleted due to poor design or operation of the treatment system during the time data were being collected. Performance data for chemical precipitation of the scrubber waters can be found in the Onsite Engineering Report for waste characterized as EPA hazardous waste number, D004.

4.2 Accuracy Correction of Performance Data

After data were eliminated from consideration for analysis of BDAT based on the screening tests, the Agency adjusted the data using analytical recovery values. Recovery values take into account analytical interferences and incomplete recoveries associated with the chemical makeup of the sample. The recovery values are listed in Appendix B. The Agency developed the recovery data (also referred to as accuracy data), by first

analyzing a waste for a given constituent and then adding a known amount of the same constituent (i.e., spike) to the waste The total amount recovered after spiking, minus the material. initial concentration in the sample, divided by the amount added, is the recovery value. At least two recovery values were calculated for spiked constituents, and the analytical data were adjusted for accuracy using the lowest recovery value for each constituent. This was accomplished by calculating an accuracy factor from the percent recoveries for each selected constituent. The reciprocal of the lower of the two recovery values multiplied by 100, yields the accuracy factor. The corrected concentration for each sample set is obtained by multiplying the accuracy factor by the raw data value. Should the corrected value be lower than the detection limit 1, the detection limit value is substituted for the corrected value.

In instances where a selected constituent was not detected in the treated waste, the treated value for that constituent was assumed to be the detection limit. The detection limit is corrected in the same manner as described above with one exception: the detection limit is not corrected to a value lower than the detection limit. The EPA does not consider values lower

^{1.} A detection limit is defined as the practical quantification limit, PQL, that is five times the method detection limit achievable when using an EPA-approved analytical method specified for a particular analysis (i.e., constituent of interest) in SW-846, 3rd Edition (USEPA 1986a).

than the detection limit to be valid. The recovery values used and accuracy factors calculated for the selected constituents are presented in Appendix D.

An arithmetic average value, representing the treated waste concentration, was calculated for each selected constituent from the corrected values. The accuracy corrected data, averages and variability factors are presented in Tables 6-1 and 6-2 for nonwastewaters and in Table 6-3 for wastewaters. These adjusted values for the treatment technology systems consisting of rotary kiln incineration followed by stabilization of the kiln ash and chemical precipitation of the scrubber water followed by stabilization of the precipitate were then used to determine BDAT for waste code's K101 and K102.

4.3 Statistical Comparison of Performance Data

In cases where the Agency has adequate performance data on treatment of the same or similar wastes using more than one technology, an analysis of variance (ANOVA) test is performed to determine if one of the technologies provides significantly the best treatment compared to the others. In cases where a particular treatment technology is shown to provide the best treatment, the treatment standards will be based on this best technology.

4.4 BDAT for K101/K102 Wastes

In the case of K101 and K102 wastes, the Agency does not have performance data for any demonstrated technology beyond rotary kiln incineration followed by stabilization of the kiln ash and chemical precipitation of the scrubber water followed by stabilization of the precipitate. The Agency therefore has no reason to believe that the levels of performance achieved by this technology can be improved upon. Thus, the Agency has determined that performance achieved by incineration followed by stabilization of the kiln ash and chemical precipitation of the scrubber water followed by stabilization of the precipitate represents BDAT.

Rotary kiln incineration and metals stabilization is judged to be available to treat K101 and K102 nonwastewaters. Chemical precipitation is judged to be available to treat K101 and K102 wastewaters.

The Agency believes these technologies to be available because: (1) these technologies are commercially available; and (2) these technologies provide a substantial reduction in the leachable levels of BDAT list constituents present in waste K101 and K102.

5. SELECTION OF REGULATED CONSTITUENTS

In the previous section, the best demonstrated available technology (BDAT) for treating waste codes K101 and K102 was determined to be incineration followed by metals stabilization of the kiln ash and chemical precipitation of the scrubber water followed by metals stabilization of the precipitate. In this section, the necessary constituents are identified for assuring the most effective treatment of the waste. This is done by following a three-step procedure:

- o identifying the BDAT list constituents found in both the untreated and treated waste;
- o evaluating effectiveness of the treatment, and
- o selecting the regulated constituents.

As discussed in Section 1, the Agency has developed a target list of hazardous constituents (Table 1-1) from which the constituents to be regulated are selected. The list is a "growing list" that does not preclude the addition of new constituents as additional key parameters are identified. The list is divided into the following categories: volatile organics, semivolatile organics, metals, inorganics other than metals, organochlorine pesticides, phenoxyacetic acid herbicides, organophosphorous pesticides, PCBS, and dioxins and furans.

5.1 BDAT List Constituents Detected in the Untreated and Treated Waste

Using EPA-collected data, the Agency identified those constituents that were detected in the untreated waste and the waste treated by incineration. EPA collected four sets of data at one facility for waste code K101 (see the Onsite Engineering Report for K101 for more details) to evaluate the treatment of waste code K101 by incineration. All four data sets were used to identify the constituents detected in the untreated waste and three ash samples were used to identify constituents in the treated waste. EPA also collected six sets of data at this facility for waste code K102 (see the Onsite Engineering Report for K102 for more details) to evaluate the treatment of waste code K102 by incineration. 1 All six data sets were used to identify the constituents detected in the untreated waste, and four of the six data sets were used to identify constituents detected in the treated waste. The detection limits for the BDAT list of constituents for K101 and K102 are presented in Appendix C.

^{1.} Data for stabilization of kiln ash and scrubber water precipitate will be transferred from the treatment of EPA hazardous waste number, F006. Data for chemical precipitation of the scrubber waters will be transferred from the treatment of EPA hazardous waste number, D004 (wastes which exhibited characteristics for EP toxicity for arsenic).

Tables 5-1 and 5-2 presents the BDAT list as discussed in Section 1. It indicates which of the BDAT list constituents were analyzed in the untreated and treated waste for K101 and K102.

As shown in Table 5-1, the following constituents were detected in the untreated waste K101: acetone, toluene, 2-nitroaniline, antimony, arsenic, barium, chromium, copper, lead, mercury, nickel, silver, vanadium, zinc, fluoride, and sulfide. The following constituents were detected after incineration of the K101 waste in the kiln ash: antimony, arsenic, barium, beryllium, chromium, copper, lead, nickel, silver, vanadium, zinc, and sulfide.

The following constituents were detected in the scrubber waters generated from incineration: bis(2-ethylhexyl) phthalate, antimony, arsenic, barium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, vanadium, and zinc.

As shown in Table 5-2, the following constituents were detected in the untreated waste K102: toluene, 2-nitrophenol, total xylenes, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, vanadium, zinc, cyanide, fluoride, and sulfide. The following constituents were detected in the kiln ash after incineration of in the K102 waste: antimony, arsenic, barium, cadmium, chromium,

TABLE 5-1 BDAT List Constituents in Untreated and Treated K101 Waste a

		Untreated	Treated	1 K101	Scrubber
1	Parameter	K101	Total	TCLP	Wastewate
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)
V	platiles				
222			D	114	ND.
1	Acetone Acetonitrile	D ND	D ND	NA NA	ND
2	Acrolein	ND	ND ND	NA NA	ND ND
3	Acrylonitrile	ND	ND	NA	ND ND
4	Benzene	ND	ND	NA	ND
5	Bromodichloromethane	ND	ND	NA	ND
6	Bromomethane	ND	ND ND	NA	ND
23		NA	NA	NA NA	
	n-Butyl alcohol				NA
7	Carbon Tetrachloride	ND	ND	NA NA	ND
8	Carbon disulfide Chlorobenzene	ND	ND	NA MA	ND
9		ND ND	ND ND	NA MA	ND
10 11	2-Chloro-1,3-butadiene Chlorodibromomethane	ND	ND ND	NA NA	ND ND
	Chloroethane	ND ND	ND ND	NA NA	ND ND
12 13	2-Chloroethyl vinyl ether	ND	ND	NA NA	ND ND
	Chloroform	ND	ND	NA	ND
14					
15	Chloromethane	ND	ND	NA NA	ND
16	3-Chloropropene	ND	ND	NA NA	ND
17	1,2-Dibromo-3-chloropropane	ND	ND	NA	ND
18	1,2-Dibromoethane	ND .	ND	NA 	ND
19	Dibromomethane	ND	ND	NA 	ND
20	trans-1,4-Dichloro-2-butene	ND .	ND	NA MA	ND
21	Dichlorodifluoromethane	ND	ND	NA 	ND
22	1,1-Dichloroethene	ND	ND	NA 	ND
23	1,2-Dichloroethane	ND	ND	NA NA	ND
24	1,1-Dichloroethylene	ND	ND	NA	ND
25	trans-1,2-Dichloroethene	ND	ND	NA 	ND
26	1,2-Dichloropropane	ND	ND	NA NA	ND
27	trans-1,3-Dichloropropene	ND	ND	NA NA	ND
28	cis-1,3-Dichloropropene	ND	ND	NA NA	ND
29	1,4-Dioxane	ND	ND	NA NA	ND
24	2-Ethoxyethanol	NA 	NA NA	NA NA	NA NA
25	Ethyl acetate	NA ND	NA NO	NA NA	NA ND
26	Ethyl benzene	ND	ND	NA NA	ND ND
30	Ethyl cyanide	ND	ND	NA NA	ND
27	Ethyl ether	NA 	NA NA	NA MA	NA ND
31	Ethyl methacrylate	ND	ND	NA NA	ND
14	Ethylene oxide	ND	ND	NA 	ND
32	Iodomethane	ND	ND	NA	ND

D - This constituent was detected.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-1 BDAT List Constituents in Untreated and Treated K101 Waste (Continued)

		Untreated	Treated	1 K101	Scrubber	
ł	Parameter	K101	Total	TCLP	Wastewate	
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)	
<u>v</u> .	olatiles (continued)					
33		NO.	ND	MA	ND	
228	Isobutyl alcohol Methanol	ND NA	ND NA	NA NA	ND NA	
34	Methyl ethyl ketone	ND	NA ND	NA NA	NA ND	
229	Methyl isobutyl ketone	NA	NA	NA	NA	
35	Methyl methacrylate	ND ND	ND	NA NA	ND	
37	Methylacrylonitrile	ND	ND	NA	ND	
38	Methylene chloride	ND	ND	NA NA	ND	
230	2-Nitropropane	NA	NA NA	NA	NA	
39	Pyridine	ND	ND	NA NA	ND	
40	1,1,1,2-Tetrachloroethane	ND ND	ND	NA NA	ND	
41	1,1,2,2-Tetrachloroethane	ND	ND	NA NA	ND	
42	Tetrachloroethene	ND ND	ND	NA NA	ND	
43	Toluene	D	ND	NA NA	ND	
44	Tribromomethane	ND	ND	NA	ND	
45	1,1,1-Trichloroethane	ND ND	ND	NA NA	ND ND	
46	1,1,2-Trichloroethane	ND	ND	NA	ND	
47	Trichloroethene	ND	ND	NA NA	ND	
48	Trichloromonofluromethane	ND	ND	NA NA	ND ND	
49	1,2,3-Trichloropropane	ND	ND	NA NA	ND	
231	1,1,2-Trichloro-1,2,2-trifluoroethamy	NA NA	NA NA	NA NA	NA NA	
50	Vinyl chloride	ND ND	ND	NA	ND	
215	1,2-Xylene	NA	NA	NA NA	NA NA	
216	1,3-Xylene	NA	NA NA	NA NA	NA NA	
217	1,4-Xylene	NA NA	NA NA	NA NA	NA NA	
<u>s</u>	emivolatiles					
51	Acenaphthalene	ND	ND	NA.	ND	
52	Acenaphthene	ND	ND	NA NA	ND	
53	Acetophenone	ND	ND	NA NA	ND	
54	2-Acetylaminofluorene	ND	ND	NA	ND	
55	4-Aminobiphenyl	ND	ND	NA	ND	
56	Aniline	ND	ND	NA	ND	
57	Anthracene	ND	ND	NA	ND	
58	Aramite	NA	NA	NA	NA	
59	Benz(a)anthracene	ND	ND	NA	ND	
218	Benzal chloride	NA	NA	NA	NA	
60	Benzenethiol	- ND	ND	NA	ND	
61	Benzidine	ND	ND	NA	ND	
62	Benzo(a)pyrene	ND	ND	NA	ND	

D - This constituent was detected.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-1 BDAT List Constituents in Untreated and Treated K101 Waste (Continued)

		Untreated	Treated	I K101	Scrubber		
Parameter		K101	Total	TCLP	Wastewate		
	,	(mg/kg)	(mg/kg)	(mg/l)	(mg/l)		
Semivolatiles (continued)							
63	Benzo(b)fluoranthene	ND	ND	NA	ND		
64	Benzo(ghi)perylene	ND	ND	NA	ND		
65	Benzo(k)fluoranthene	ND	ND	NA	ND		
66	p-Benzoqui none	ND	ND	NA	ND		
67	Bis(2-chloroethoxy)ethane	NO	ND	NA	ND		
68	Bis(2-chloroethyl)ether	NO	ND	NA	ND		
69	Bis(2-chloroisopropy)ether	NO	ND	NA	ND		
70	Bis(2-ethylhexyl)phthalate	ND	ND	NA	D		
71	4-Bromophenyl phenyl ether	ND	ND	NA	NO		
72	Butyl benzyl phthlate	ND	ND	NA	ND		
73	2-sec-Butyl-4,6-dinitrophenol	ND	ND	NA	ND		
74	p-Chloroaniline	ND	ND	NA	ND		
75	Chlorobenzilate	NA	NA	NA	NA		
76	p-Chloro-m-cresol	ND	ND	NA	ND		
77	2-Chloronaphthalene	ND	ND	NA	ND		
78	2-Chlorophenol	ND	ND	NA	ND		
79	3-Chloropropionitrile	NA	NA	NA	NA		
80	Chrysene	ND	ND	NA	ND		
81	ortho-Cresol	ND	ND	NA	ND		
82	para-Cresol	ND	ND	NA	ND		
232	Cyclohexanone	ND	ND	NA	ND		
83	Dibenz(a,h)anthracene	ND	ND	NA	ND		
84	Dibenzo(a,e)pyrene	NA	NA	NA	NA		
85	Dibenzo(a,i)pyrene	NA	NA	NA	NA		
86	m-Dichlorobenz ene	ND	ND	NA	ND		
87	o-Dichlorobenzene	ND	ND	NA	ND		
88	p-Dichlorobenzene	ND	ND	NA	ND		
89	3,3'-Dichlorobenzidine	ND	ND	NA	ND		
90	2,4-Dichlorophenol	ND	ND	NA	ND		
91	2,6-Dichlorophenol	ND	ND	NA	ND		
92	Diethyl phthalate	ND	, ND	NA	ND		
93	3,3'-Dimethyoxlbenzidine	ND	; ND	NA	ND		
94	p-Dimethylaminoazobenzene	ND	ND	NA	ND		
95	3,3'-Dimethylbenzidine	ND	ND	NA	ND		
96	2,4-Dimethylphenol	ND	ND	NA	ND		
97	Dimethyl phthalate	ND	ND	NA	ND		
98	Di-n-butyl phthalate	ND	ND	NA	ND		
99	1,4-Dinitrobenzene	ND	ND	NA	DN		
100	4,6-Dinitro-o-cresol	ND	ND	NA	ND		
101	2,4-Dinitrophenol	ND	ND	NA	ND		

D - This constituent was detected.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-1 BDAT List Constituents in Untreated and Treated K101 Waste $^{\rm a}$ (Continued)

		Untreated	Treated	Scrubber				
Parameter		K101	Total	TCLP	Wastewate			
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)			
Semivolatiles (cont.)								
			•					
102	2,4-Dinitrotoluene	ND	ND	NA	ND			
03	2,6-Dinitrotoluene	ND	ND	NA	ND			
04	Di-n-octyl phthalate	ND	ND	NA	ND			
05	Di-n-propylnitrosamine	ND	ND	NA	ND			
06	Diphenylamine	ND	ND	NA	ND			
19	Diphenylnitrosamine	NA	NA	NA	NA			
07	1,2-Diphenylhydrazine	ND	ND	NA	ND			
80	Fluoranthene	ND	ND	NA	ND			
09	Fluorene	ND	DM	NA	ND			
10	Hexachlorobenzene	ND	ND	NA	ND			
11	Hexachlorobutadiene	ND	ND	NA	ND			
12	Hexachlorocyclopentadiene	ND	ND	NA	ND			
13	Hexachloroethane	ND	ND	NA	ND			
14	Hexachlorophene	NA	NA	NA	NA			
15	Hexachloropropene	ND	ND	NA	ND			
16	Indeno(1,2,3-cd)pyrene	ND	ND	NA	ND			
17	Isosafrole	ND	ND	NA	ND			
18	Methapyrilene	NA	NA	NA	NA			
19	3-Methycholanthrene	ND	ND	NA	ND			
20	4,4'-Methylenebis(2-chloroaniline)	ND	ND	NA	ND			
36	Methyl methanesulfonate	ND	ND	NA	ND			
21	Napthalene ·	ND	ND	NA	ND			
22	1,4-Naphthoquinone	NA	NA	NA	NA			
23	1-Napthylamine	ND	ND	NA	ND			
24	2-Napthylamine	ND	ND	NA	ND			
**	2-Nitroaniline	D	ND	NA	ND			
25	p-Nitroaniline	ND	ND	NA	ND			
26	Nitrobenzene	ND	ND	NA	ND			
27	4-Nitrophenol	ND	ND	NA	ND			
28	N-Nitrosodi-n-butylamine	ND	ND	NA NA	ND			
29	N-Nitrosodiethylamine	ND	ND	NA	ND			
30	N-Nitrosodimethylamine	ND	ND	NA NA	ND			
31	N-Nitrosomethylethylamine	ND	ND	NA NA	ND			
32	N-Nitrosomorpholine	ND	ND	NA NA	ND			
33	N-Nitrosopiperidine	ND	ND	NA NA	ND			
34	N-Nitrosopyrrolidine	ND	ND	NA NA	ND			
35	5-Nitro-o-toluidine	ND	ND	NA NA	ND ND			
36	Pentachlorobenzene	ND	ND	NA	ND			
37	Pentachloroethane	NA NA	NA	NA	NA NA			
38	Pentachloronitrobenzene	ND	ND	NA NA	NA ND			

^{***-} Not on BDAT List.

D - This constituent was detected.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-1 BDAT List Constituents in Untreated and Treated K101 Waste (Continued)

		Untreated	Treated	K101	Scrubber
Parameter		K101	Total	TCLP	Waste wate
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)
<u>Ş</u>	emivolatiles (cont.)				
139	Pentachlorophenol	ND	ND	NA ,	ND
140	Phenacetin	ND	ND	NA (ND
41	Phenanthrene	ND	ND	NA.	ND
142	Phenol	ND	ND	NA NA	ND
220	Phthalic anhydride	ND	ND	NA NA	ND
143	2-Picoline	ND	ND	NA NA	ND
44	Pronamide	ND	ND	NA NA	ND
45	Pyrene	ND	ND	NA NA	ND
146	Resorcinol	NA	NA NA	NA NA	NA NA
147	Safrole	ND	ND	NA NA	ND
148	1,2,4,5-Tetrachlorobenzene	ND	ND	NA NA	ND
149	2,3,4,6-Tetrachlorophenol	ND	ND	NA NA	ND
150	1,2,4-Trichlorobenzene	ND	ND	NA NA	ND
151	2,4,5-Trichlorophenol	ND	ND	NA NA	, ND
52	2,4,6-Trichlorophenol	ND	ND	NA NA	ND
53	Tris(2,3-dibromopropyl)phosphate	ND	ND	NA NA	ND
Me	etals				
154	Antimony	D	. Б	D	D
155	Arsenic '	D	D	, D	D
156	Barium ,	D	D	D	D
157	Beryllium	ND	D	D	ND
158	Cadmium	ND	ND	D	ND
159	Chromium	D	D	D	D
221	Chromium (hexavalent)	ND	ND	ND	ND
160	Copper	D	D	D	D
161	Lead	D	D	D	D
162	Mercury	D	ND	ND	D
63	Nickel	D	D	D	D
164	Selenium	ND	ND	ND	D
65	Silver	D	D	ND	D
166	Thallium	ND	ND	ND -	D
67	Vanadium	D	D	D	D
68	Zinc	D	D	D	D
<u>I</u>	norganics				
169	Cyanide	ND	ND	NA	ND
70	Fluoride	D**	D	NA	D**
71	Sulfide	D	D	NA	D

D - This constituent was detected.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

^{**} - Indicates that only sample set 3 was analyzed for this constituent.

TABLE 5-1 BDAT List Constituents in Untreated and Treated K101 Waste (Continued)

		Untreated	Treated K101		Scrubber	
Parameter	Parameter	K101	Total	TCLP	Waste wate	
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)	
<u>Or</u>	rganochlorine Pesticides					
70	Aldrin	NA	NA	NA	NA	
72 73		NA NA	NA NA	NA NA	NA NA	
13 74	alpha-BHC beta-BHC	NA NA	NA NA	NA NA	NA	
74 75	delta-BHC	NA NA	NA NA	NA NA	NA	
		NA NA	NA NA	NA	NA NA	
76 ~~	gamma-BHC			NA	NA NA	
77 70	Chlordane	NA NA	NA NA			
78	DDD	NA 	NA 	NA NA	NA	
79	DDE	NA NA	NA NA	NA NA	NA	
80	DDT	NA 	NA 	NA NA	NA.	
81	Dieldrin	NA	NA	NA 	NA	
82	Endosulfan I	NA	NA	NA 	NA 	
83	Endosulfan II	NA	NA	NA	NA	
84	Endrin	NA	NA	NA	NA	
85	Endrin aldehyde	NA	NA	NA	NA	
86	Heptachlor	NA	NA	NA	NA	
87	Heptachlor epoxide	NA	NA	NA	NA	
88	Isodrin	NA	NA	NA	NA	
89	Kepone	NA	NA	NA	NA	
90	Mehoxychlor	NA	NA	NA	NA	
91	Toxaphene	NA	NA	NA	NA	
Pl	henoxyacetic Acid Herbicides					
92	2,4-Dichlorophenoxyacetic acid	NA	NA	NA	NA	
93	Silvex	NA	NA	NA	NA	
94	2,4,5-T	NA	NA	NA	NA	
<u>0</u>	rganophosphorous Insecticides					
95	Disulfoton	NA	NA	NA	NA	
96	Famphur	NA	NA	NA	NA	
97	Methyl parathion	NA	NA	NA	NA	
98	Paration	NA	NA	NA	NA	
99	Phorate	NA	NA	NA	NA	
P	CBs**					
00	Aroclor 1016	ND	ND	NA	ND	
01	Arocior 1221	ND	ND	NA	ND	
02	Aroclor 1232	ND	ND	NA	ND	

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-1 BDAT List Constituents in Untreated and Treated K101 Waste (Continued)

	Untreated	Treated K101		Scrubber
Parameter	K101	Total	TCLP	Wastewater
•	(mg/kg)	(mg/kg)	(mg/l)	(mg/l)
PCBs** (continued)				
203 Aroclor 1242	ND	ND	NA	ND
204 Aroclor 1248	ND	ND	NA	ND
205 Aroctor 1254	ND	ND	NA	ND
206 Aroclor 1260	ND	ND	NA	ND
Dioxins and Furans**				
207 Hexachlorodibenzo-p-dioxins	ND	ND	NA	ND
208 Hexachlorodibenzofuran	ND	ND	NA	ND
209 Pentachlorodibenzo-p-dioxins	ND	ND	NA	ND
210 Pentachlorodibenzofuran	DИ	ND	NA	ND
211 Tetrachlorodibenzo-p-dioxins	ND	ND	NA	ND
12 Tetrachlorodibenzofuran	ND	ND	NA	ND
13 2,3,7,8-Tetrachlorodibenzo-p-dioxin	ND	ND	NA	ND

a - Obtained from Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101. Tables 5-2 through 5-7.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-2 BDAT List Constituents in Untreated and Treated K102 Waste a

		Untreated	Treated	d K102	Scrubber
	Parameter	K102	Total	TCLP	Wastewate
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)
<u>v</u>	olatiles				
222	Acetone	ND	ND	NA	ND
1	Acetonitrile	ND	ND	NA	ND ND
2	Acrolein	ND	ND	NA NA	ND ND
3	Acrylonitrile	ND	ND	NA NA	ND ND
4	Benzene	ND	ND	NA NA	ND
5	Bromodichloromethane	ND	ND	NA.	ND
6	Bromomethane	ND	ND	NA	ND
223	n-Butyl alcohol	NA.	NA NA	NA NA	NA
7	Carbon Tetrachloride	ND	ND	NA NA	ND
8	Carbon disulfide	ND	ND	NA	ND
9	Chlorobenzene	ND	ND	NA	ND
10	2-Chloro-1,3-butadiene	ND	ND	NA	ND
11	Chlorodibromomethane	ND	ND	NA	ND
12	Chloroethane	ND	ND	NA	ND
13	2-Chloroethyl vinyl ether	ND	ND	NA	ND
14	Chloroform	ND	ND	NA	ND
15	Chloromethane	ND	ND	NA	ND
16	3-Chloropropene	ND	ND	NA	ND
17	1,2-Dibromo-3-chloropropane	ND	ND	NA	ND
18	1,2-Dibromoethane	ND	ND	NA	ND
19	Dibromomethane	ND	NO	NA	ND
20	trans-1,4-Dichloro-2-butene	ND	ND	NA	ND
21	Dichlorodifluoromethane	ND	ND	NA	ND
22	1,1-Dichloroethene	ND	ND	NA	ND
23	1,2-Dichloroethane	ND	ND	NA	ND
24	1,1-Dichloroethylene	ND	ND	NA	NĐ
25	trans-1,2-Dichloroethene	ND	ND	NA	ND
26	1,2-Dichloropropane	ND	ND	NA	ND
27	trans-1,3-Dichloropropene	ND	ND	NA	ND
28	cis-1,3-Dichloropropene	ND	ND	NA	ND
29	1,4-Dioxane	ND	ND	NA	· ND
224	2-Ethoxyethanol	NA	NA	NA	· NA
225	Ethyl acetate	NA	NA	NA	NA
226	Ethyl benzene	ND	ND	NA	ND
30	Ethyl cyanide	ND	ND	NA	ND
227	Ethyl ether	NA	NA	NA	NA
31	Ethyl methacrylate	ND	ND	NA	ND
214	Ethylene oxide	ND	ND	NA	ND
32	Iodomethane	ND	ND	NA	ND

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-2 BDAT List Constituents in Untreated and Treated K102 Waste (Continued)

		Untreated	Treated K102		Scrubber	
F	Parameter	K102	Total	TCLP	Wastewate	
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)	
Vo	olatiles (continued)					
33	Isobutyl alcohol	ND	ND	NA	ND	
28	Methanol	NA NA	NA	NA NA	NA NA	
34	Methyl ethyl ketone	ND	ND	NA NA	ND	
229	Methyl isobutyl ketone	NA NA	NA	NA NA	NA	
35	Methyl methacrylate	ND	ND	NA NA	ND	
37	Methylacrylonitrile	ND	ND	NA NA	ND	
38	Methylene chloride	ND	ND	NA NA	ND	
30	2-Nitropropane	NA	NA NA	NA NA	NA	
.30 39	Pyridine	ND	ND	NA NA	ND	
		ND	ND	NA	ND	
40	1,1,1,2-Tetrachloroethane	ND	ND	NA NA	ND	
41	1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	ND	NA NA	ND	
42		D	ND	NA	ND	
43	Toluene Tribromomethane		ND ND	NA NA	ND	
44		ND ND	ND ND	NA NA	ND	
45	1,1,1-Trichloroethane	ND	ND	NA	ND	
46	1,1,2-Trichloroethane Trichloroethene	ND	ND ND	NA NA	ND	
47	Trichloromonofluromethane	ND	ND ND	NA NA	ND	
48			ND	NA	ND .	
49	1,2,3-Trichloropropane	ND NA	NA	NA	NA NA	
231	1,1,2-Trichloro-1,2,2-trifluoroethane	NA NO	ND	NA	ND	
50	Vinyl chloride	ND				
215	1,2-Xylene	NA NA	NA NA	NA NA	NA NA	
216	1,3-Xylene	NA	NA NA	NA NA	NA NA	
217	1,4-Xylene	NA -	NA NA	NA 	NA NA	
	Total Xylenes	D	ND	NA	ND	
<u>s</u>	<u>emivolatiles</u>					
51	Acenaphthalene	ND	ND	NA	ND	
52	Acenaphthene	ND	ND	NA	ND	
53	Acetophenone	ND	ND	NA	ND	
54	2-Acetylaminofluorene	ND	ND	NA	ND	
55	4-Aminobiphenyl	ND	ND	NA	ND	
56	Aniline	ND	ND	NA	ND	
57	Anthracene	ND	ND	NA	ND	
58	Aramite	NA	NA	NA	NА	
59	Benz(a)anthracene	ND	ND	NA	ND	
218	Benzal chloride	NA	NA	NA	NA	
60	Benzenethiol	ND	ND	NA	ND	
61	Benzidine	ND	ND	NA	ND	
62	Benzo(a)pyrene	ND	ND	NA	ND	

D - This constituent was detected.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-2 BDAT List Constituents in Untreated and Treated K102 Waste (Continued)

		Untreated	Treated	I K102	Scrubber			
í	Parameter	K102	Total	TCLP	Wastewate			
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)			
Semîvolatiles (continued)								
63	Benzo(b)fluoranthene	ND	ND	NA	ND			
64	Benzo(ghi)perylene	ND	ND	NA	ND			
65	Benzo(k)fluoranthene	ND	ND	NA	ND			
66	p-Benzoquinone	ND	ND	NA	ND			
67	Bis(2-chloroethoxy)ethane	ND	ND	NA	ND			
68	Bis(2-chloroethyl)ether	ND	ND	NA	ND			
69	Bis(2-chloroisopropy)ether	ND	ND	NA	ND			
70	Bis(2-ethylhexyl)phthalate	ND	ND	NA	D			
71	4-Bromophenyl phenyl ether	ND	ND	NA	ND			
72	Butyl benzyl phthlate	ND	ND	NA	ND			
73	2-sec-Butyl-4,6-dinitrophenol	ND	ND	NA	ND			
74	p-Chloroaniline	ND	ND	NA	ND			
75	Chlorobenzilate	NA	NA	NA	NA			
76	p-Chloro-m-cresol	ND	ND	NA	ND			
77	2-Chloronaphthalene	ND	ND	NA	ND			
78	2-Chlorophenol	ND	ND	NA	ND			
79	3-Chloropropionitrile	NA	NA NA	NA	NA			
80	Chrysene	ND	ND	NA	ND			
81	ortho-Cresol	ND	ND	NA	ND			
82	para-Cresol	ND	ND	NA	ND			
232	Cyclohexanone	ND	ND	NA	ND			
83	Dibenz(a,h)anthracene	ND	ND	NA	ND			
84	Dibenzo(a,e)pyrene	NA.	NA NA	NA	NA.			
85	Dibenzo(a,i)pyrene	NA	NA.	NA	NA			
86	m-Dichlorobenzene	ND	ND	NA	ND			
87	o-Dichlorobenzene	ND	ND	NA	ND			
88	p-Dichlorobenzene	ND	ND	NA	ND			
89	3,3'-Dichlorobenzidine	ND	ND	NA	ND			
90	2,4-Dichlorophenol	ND	ND	NA	ND			
91	2,6-Dichlorophenol	ND	ND	NA	ND			
92	Diethyl phthalate	ND	ND	NA	ND			
93	3,3'-Dimethyoxlbenzidine	ND	ND	NA	ND			
94	p-Dimethylaminoazobenzene	ND	ND	NA NA	ND			
95	3,3'-Dimethylbenzidine	ND	ND	NA	ND			
96	2,4-Dimethylphenol	ND	ND	NA NA	ND			
97	Dimethyl phthalate	ND	ND	NA NA	ND			
98	Di-n-butyl phthalate	ND	ND	NA NA	ND			
99	1,4-Dinitrobenzene	ND	ND	NA NA	ND			
100	4,6-Dinitro-o-cresol	ND	ND	NA	ND			
101	2,4-Dinitrophenol	ND	ND	NA NA	ND			

D - This constituent was detected.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-2 BOAT List Constituents in Untreated and Treated K102 Waste (Continued)

		Untreated	Treated	i K102	Scrubber
ş	Parameter	K102	Total	TCLP	Wastewate
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)
<u>s</u>	emivolatiles (cont.)				·
102	2,4-Dinitrotoluene	ND	ND	NA.	115
103	2,6-Dinitrotoluene	ND	ND	NA NA	ND
04	Di-n-octyl phthalate	ND	ND	NA NA	ND
05	Di-n-propylnitrosamine	ND	ND	NA NA	ND
06	Diphenylamine	ND	ND	NA NA	ND
19	Diphenylnitrosamine	NA NA	NA	NA NA	ND
07	1,2-Diphenylhydrazine	ND	ND		NA ND
08	Fluoranthene	ND		NA NA	ND
09	Fluorene	ИD	ND ND	NA NA	ND
10	Hexachlorobenzene	ND	ND	NA NA	ND
11	Hexachlorobutadiene	ND	ND		ND
12	Hexachtorocyclopentadiene	ND	ND	NA NA	ND
13	Hexachloroethane	ND	ND ND	NA NA	ND
14	Hexachlorophene	NA	NA NA	NA NA	ND
15	Hexachloropropene	ND	ND	NA NA	NA NO
16	Indeno(1,2,3-cd)pyrene	ND	ND	NA NA	ND
17	Isosafrole	ND	NO		ND
18	Methapyrilene	NA NA	NA	NA NA	ND
19	3-Methycholanthrene	ND	ND	NA NA	NA ND
20	4,4'-Methylenebis(2-chloroaniline)	ND	ND	NA NA	ND
36	Methyl methanesulfonate	ND	ND	NA NA	ND ND
21	Napthalene .	ND	ND	NA NA	
22	1,4-Naphthoquinone	NA	NA	NA NA	ND
23	1-Napthylamine	ND	ND	NA	NA ND
24	2-Napthylamine	ND	ND	NA NA	ND ND
25	p-Nitroaniline	ND	ND	NA NA	ND
26	Nitrobenzene	ND	ND	NA NA	ND
**	2-Nitrophenol	D	ND	NA NA	ND
27	4-Nitrophenol	ND	ND	NA NA	ND
28	N-Nitrosodi-n-butylamine	ND	ND	NA	ND
29	N-Nitrosodiethylamine	ND	ND	NA NA	ND
30	N-Nitrosodimethylamine	ND	ND	NA NA	ND
31	N-Nitrosomethylethylamine	ND	ND	NA NA	ND
32	N-Nitrosomorpholine	ND	ND	NA	ND
33	N-Nitrosopiperidine	ND	ND	NA NA	ND
34	N-Nitrosopyrrolidine	ND	ND	NA NA	ND
35	5-Nitro-o-toluidine	ND	ND	NA NA	ND
36	Pentachlorobenzene	ND	ND	NA	ND
37	Pentachloroethane	NA NA	NA NA	NA NA	NA NA
38	Pentachtoroni trobenzene	ND	ND	NA NA	ND

^{***-} Not on BDAT List.

D - This constituent was detected.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-2 BDAT List Constituents in Untreated and Treated K102 Waste (Continued)

		Untreated	Treated	1 K102	Scrubber	
1	Parameter	K102	Total	TCLP	Wastewate	
	•	(mg/kg)	(mg/kg)	(mg/l)	(mg/l)	
<u>s</u>	emivolatiles (cont.)					
139	Pentachlorophenol	ND	ND	NA	ND	
140	Phenacetin	ND	ND	NA.	ND	
141	Phenanthrene	ND	ND	NA	ND	
142	Phenol	ND	ND	NA	D	
220	Phthalic anhydride	ND	ND	NA NA	ND	
143	2-Picoline	ND	ND	NA NA	ND	
144	Pronamide	ND	ND	NA	ND	
145	Pyrene	ND	ND	NA NA	ND	
146	Resorcinol	NA	NA NA	NA NA	NA	
147	Safrole	ND	ND	NA NA	ND	
148	1,2,4,5-Tetrachlorobenzene	ND	ND	NA NA	ND	
149	2,3,4,6-Tetrachlorophenol	ND	ND	NA NA	ND ND	
150	1,2,4-Trichlorobenzene	ND	ND	NA NA		
151	2,4,5-Trichlorophenol	ND ND	ND:	NA NA	ND ND	
152	2,4,6-Trichlorophenol	ND	ND			
153	Tris(2,3-dibromopropyl)phosphate	ND ND		NA NA	ND	
1,55	11 13(2,5 dibi diopi opyt)pilospilate	NU	ND	NA	ND	
<u>M</u>	etals					
154	Antimony	D	D	D	Đ	
155	Arsenic	D	D	D	D	
156	Barium	D	D	D	D	
157	Beryllium	D	ND	ND		
158	Cadmium	D	D	D	D	
159	Chromium	D	D	D	D	
221	Chromium (hexavalent)	ND	ND	ND	D	
160	Copper	D	D		ND	
161	Lead	D	D	D	D	
162	Mercury	D	D	D	D	
163	Nickel	D	D	D	ם	
164	Selenium	D		D	D	
165	Silver	ND	D ND	D	D	
66	Thallium	D	ND	ND ND	D	
67	Vanadium	D	D	ND ND	D	
68	Zinc	D	D	D	D D	
<u>Ir</u>	norganics					
69	Cyanide	D	D	NA	ND	
70	Fluoride	D**	D**	NA NA	D**	
71	Sulfide	D	D	NA NA	D	

D - This constituent was detected.

NA - This constituent was not analyzed.

ND - This constituent was not detected.

 $[\]star\star$ - Indicates that only sample set 3 was analyzed for this constituent.

TABLE 5-2 BDAT List Constituents in Untreated and Treated K102 Waste (Continued)

		Untreated	Treated	1 K102	Scrubber
Parameter	K102	Total	TCLP	Wastewate	
	1	(mg/kg)	(mg/kg)	(mg/l)	(mg/t) -
Or	ganochlorine Pesticides			**	•
72	Aldrin	NA	NA	NA	NA
73	alpha-BHC	NA	NA	NA	NA
74	beta-BHC	NA	NA	NA	NA
75	delta-BHC	NA	NA	NA	NA
76	gamma-BHC	NA	NA	NA	NA
77	Chlordane	NA	NA	NA	NA
78	DDD	NA	NA	NA	NA
79	DDE	NA	NA	NA	NA
80	DDT	NA	NA	NA	NA
81	Dieldrin	NA	NA	NA	NA
82	Endosulfan I	NA	NA	NA	NA
83	Endosulfan II	NA	NA	NA	NA
84	Endrin	NA	NA	NA	NA
85	Endrin aldehyde	NA	NA	NA	NA
86	Heptachlor	NA	NA	NA	NA
87	Heptachlor epoxide	NA	NA	NA	NA
88	Isodrin	NA	NA	NA	NA
89	Kepone	NA	NA	NA	NA
90	Mehoxychlor	NA	NA	NA	NA
91	Toxaphene	NA	NA	NA	NA
Pł	nenoxyacetic Acid Herbicides				
92	2,4-Dichlorophenoxyacetic acid	NA	NA	NA	NA
93	Silvex	NA	NA	NA	NA
94	2,4,5-7	NA	NA	NA	NA
<u>01</u>	rganophosphorous Insecticides				
95	Disulfoton	NA	NA	NA	NA
96	Famphur	NA	NA	NA	NA
97	Methyl parathion	NA	NA	NA	NA
98	Paration	NA	NA	NA	NA
99	Phorate	NA	NA	NA	NA
<u>P(</u>	<u>CBs</u> **				
00	Aroclor 1016	ND	ND	NA	ND
01	Aroclor 1221	ND	ND	NA	ND
02	Aroclor 1232	ND	ND	NA	ND

NA - This constituent was not analyzed.

ND - This constituent was not detected.

TABLE 5-2 BDAT List Constituents in Untreated and Treated K102 Waste (Continued)

		Untreated	Treated	K102	Scrubber	
Paramete	er	K102	Total	TCLP	Wastewater	
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)	
PCBs** (c	continued)					
03 Aroclo	or 1242	ND	ND	NA	ND	
04 Aroclo	or 1248	ND	ND	NA	ND	
05 Aroclo	or 1254	ND	ND	NA	ND	
06 Aroclo	or 1260	ND	ND	NA	ND	
Dioxins a	and furans**					
:07 Hexach	nlorodibenzo-p-dioxins	ND	ND	NA	ND	
08 Hexach	nlorodibenzofuran	ND	ND	NA	ND	
09 Pentac	chlorodibenzo-p-dioxins	ND	ND	NA	ND	
10 Pentac	chlorodibenzofuran	ND	ND	NA	ND	
11 Tetrac	chlorodibenzo-p-dioxins	ND	ND	NA	ND	
12 Tetrac	chlorodibenzofuran	ND	ND	NA	ND	
13 2,3,7,	,8-Tetrachlorodibenzo-p-dioxin	ND	ND	NA	ND	

a - Obtained from Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K102. Tables 5-2 through 5-9.

2

NA - This constituent was not analyzed.

ND - This constituent was not detected.

copper, lead, mercury, nickel, selenium, vanadium, zinc, fluoride, and sulfide.

The following constituents were detected in the scrubber waters generated from incineration: bis(2-ethylhexyl) phthalate, phenol, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, vanadium, and zinc.

Some constituents were detected in the ash and scrubber water which were not detected in the untreated waste. Organic constituents detected in the scrubber water but not detected in the untreated waste had detection limits considerably lower than in the untreated waste. Metal constituents detected in the treated waste but not detected or lower in concentrations than in the untreated waste may be present due to lower detection limits or operating conditions of the kiln. This is the case for both K101 and K102.

The untreated and treated waste samples were not analyzed for other classes of BDAT organics (organochlorine pesticides, phenoxyacetic acid herbicides, and organophosphorus pesticides) because there is no in-process source of these constituents and because of the extreme unlikelihood of finding these constituents at treatable levels in the waste.

5.2 <u>Constituents Detected in the Untreated Waste But Not Considered for Regulation</u>

Some BDAT metal constituents, beryllium, mercury, selenium, silver, thallium, and vanadium, which were detected in the untreated waste, were not present at treatable levels in the kiln ash for K101 and K102 waste codes. Therefore, these metals were not selected as regulated constituents for kiln ash nonwastewaters of K101 and K102.

Metal constituents present in K101 and K102 scrubber water that were not selected for regulation in the wastewaters are as follows: barium, beryllium, chromium, copper, nickel, selenium, silver, thallium, vanadium, and zinc. These metals were not selected because they were not present at treatable levels in the scrubber water.

The non-metallic inorganic constituents were generally present in untreatable concentrations in the untreated waste codes K101 and K102. Also, by comparing the concentration of cyanide and fluoride in the untreated and treated waste for both waste codes, the Agency concluded that these two constituents were not substantially treated. The Agency recognizes that the sulfide concentration was diminished in the treated waste, but considers this an incidental treatment since the treatment technology tested is not demonstrated for the treatment of sulfides. As a result, the BDAT list inorganic constituents

(other than metals) in K101 and K102 were eliminated as a class of BDAT list constituents to be regulated in waste codes K101 and K102.

The remaining two classes of constituents, namely, volatiles and semivolatiles, were generally present at treatable concentration levels in the untreated waste. Volatiles and semivolatiles were judged to be substantially treated by incineration. Only bis(2-ethylhexyl)phthalate was not considered for regulation since it is believed to be a contaminant due to sample containerization.

Tables 5-3 and 5-4 list the constituents considered for regulation by class and waste form. The selection of constituents is presented below.

5.3 Constituents Selected for Regulation

The Agency evaluated the analytical data for each constituent to determine if the constituent should be selected for regulation. In general, the Agency was guided by the criteria for selecting regulated constituents as described in Section 1 of this background document. Table 5-5 lists the constituents selected for regulation by class. The rationale for selecting the regulated constituents is presented below.

TABLE 5-3 CONSTITUENTS CONSIDERED FOR REGULATION IN K101

CONSTITUENT	NONWASTEWATERS	WASTEWATERS		
Volatile Organics				
Acetone	X	x		
Toluene	X	X		
Semi-Volatile Organics				
2-Nitroaniline	X	Х		
Metals				
Antimony	X	Х		
Arsenic '	X	х		
Barium	· x			
Cadmium	X	х		
Chromium	X			
Copper	X			
Lead	X	х		
Mercury		х		
Nickel	X			
Zinc	x			

TABLE 5-4 CONSTITUENTS CONSIDERED FOR REGULATION IN K102

CONSTITUENT	NONWASTEWATERS	WASTEWATERS		
Volatile Organics				
Toluene	X	x		
Total Xylenes	X	х		
Semi-Volatile Organics				
2-Nitrophenol	X	х		
Phenol	Х .	Х		
Metals				
Antimony	X	x		
Arsenic	. X	x		
Barium	Х			
Cadmium	Х	x		
Chromium	Х			
Copper	х			
Lead	х	х		
Mercury		х		
Nickel	х			
Zinc	Х			

TABLE 5-5 CONSTITUENTS SELECTED FOR REGULATION IN K101/K102

CONSTITUENT	NONWASTEWATERS	WASTEWATERS			
Semi-Volatile Organics					
2-Nitroaniline *	X	x			
2-Nitrophenol **	Х	Х			
Metals					
Arsenic	Х	x			
Antimony	x	x			
Barium	x				
Cadmium	x	x			
Chromium	x				
Copper	X				
Lead	X	x			
Mercury		x			
Nickel	X				
Zinc	х				

^{*} Regulated only in K101.

^{**} Regulated only in K102.

5.3.1 Nonwastewaters

Volatile and Semivolatile Organics

The non-BDAT constituent 2-nitroaniline was present in significant concentrations in untreated K101. It was substantially treated by incineration. Therefore, 2-nitroaniline was selected as a regulated constituent for K101 organic nonwastewaters. It was also selected because it will indicate whether or not the treatment system has substantially reduced organic constituent concentrations in K101. The boiling point of 2-nitroaniline is 284°C, higher than the other organic constituents present in untreated K101. Therefore, if 2-nitroaniline is effectively treated by incineration, then other organics present in K101 are also effectively treated.

Acetone and toluene were present at moderate levels in untreated K101, but were not detected in the treated waste. The boiling points of acetone and toluene are 56.2°C and 110.6°C, respectively, which are considerably lower than that of 2-nitroaniline. The Agency also considers the detection limits for aniline in untreated K101 waste unusually high and believes aniline was present at moderate levels. The boiling point of aniline is 184-186°C. Therefore, if 2-nitroaniline is effectively treated, then acetone, toluene and aniline will also be treated. As a result, acetone, toluene and aniline will not

be proposed for regulation at this time. However, treatment standards have been developed in Section 6.

The constituent that is selected for regulation in K102 as the indicator for the destruction of organics present in the waste is 2-nitrophenol. The non-BDAT constituent 2-nitrophenol was detected in treatable concentrations in untreated K102. It is was not detected in the treated waste. The boiling point of 2-nitrophenol is 216°C which is higher than the boiling points of other organic constituents present in untreated K102. Therefore, the effective treatment of 2-nitrophenol will indicate that organics present in untreated K102 have also been effectively treated.

Toluene and xylenes were detected at moderate levels in untreated K102. The boiling points of ortho, meta, and para-xylenes are 144.4°C, 139.1°C, and 138.3°C, respectively. Toluene and xylenes will not be selected for regulation because if 2-nitrophenol is effectively treated, then toluene and xylenes will also be treated.

<u>Metals</u>

Incineration is not an applicable or demonstrated treatment of BDAT list metals. The incinerator ash and scrubber water generated by the incineration process contain treatable

concentration levels for several metal constituents. The EPA did not collect data for the stabilization of the BDAT list metals for K101 and K102. However, nonwastewaters with similar constituents and characteristics have been effectively treated by metals stabilization. Therefore, metals stabilization is believed to effectively treat the metal constituents in K101 and K102 nonwastewaters.

Selection of metal constituents to be regulated in K101 and K102 is dependent upon the concentration of the metals in the incinerator ash. For the purposes of transferring data, the incinerator ash is considered the untreated waste and the performance data which is transferred is considered the treated waste. The K101 and K102 metals concentrations in the ash must be compared to data for the waste codes that are being considered for transferring data. Only constituents present and at treatable levels will be considered for regulation. After a comparison with several nonwastewaters, F006 metals stabilization data was transferred to K101 and K102.

Arsenic, antimony and barium will not be regulated in the K101 and K102 nonwastewaters at this time. The Agency is investigating other treatment techniques for these three metals. For K101 and K102 kiln ash nonwastewaters, the other metals present in the kiln ash at treatable levels for metals stabilization are cadmium, chromium, copper, lead, nickel, and

zinc. The Agency believes that metals stabilization of the kiln ash will effectively reduce the leachability of the metal constituents present in the nonwastewaters.

5.3.2 Wastewaters

Volatile and Semivolatile Organics

The two organic indicators, 2-nitroaniline and 2-nitrophenol, selected for K101 and K102 nonwastewaters respectively, were also selected for the wastewater forms of K101 and K102. The rationale for their selection is the same as the one discussed for K101 and K102 nonwastewaters. If 2-nitroaniline and 2-nitrophenol are effectively treated by incineration, then other organics present in the waste will also be reduced to acceptable concentration levels.

Metals

The BDAT list metal constituents antimony, arsenic, cadmium, lead, and mercury were present at treatable levels in the scrubber water for treatment by chemical precipitation. The Agency believes that chemical precipitation of the scrubber water for K101 and K102 will effectively treat the metals present at treatable concentrations. As a result, the five metals listed above were selected as regulated constituents for waste codes K101 and K102 wastewaters. At this time the treatment standard for antimony will be deferred until a suitable waste code has been selected for the transference of data.

6. CALCULATION OF TREATMENT STANDARDS

In this section, the actual treatment standards for waste codes K101 and K102 are presented. These standards were calculated based on the performance of the demonstrated treatment system which was determined by the Agency to be the best for treating both waste codes. In Section 4, BDAT for the listed waste codes K101 and K102 was determined to be rotary kiln incineration, followed by stabilization of the resulting ash, and chemical precipitation of the scrubber water followed by stabilization of the resulting precipitate. The previous section identified the constituents proposed for regulation for the nonwastewater and wastewater forms of K101 and K102 wastes.

As discussed in Section 1, the Agency calculated the BDAT treatment standards for waste codes K101 and K102 by following a four-step procedure: (1) editing the data; (2) correcting the remaining data for analytical interference; (3) calculating adjustment factors (variability factors) to account for process variability; and (4) calculating the actual treatment standards using variability factors and average treatment values. The four steps in this procedure are discussed in detail in Sections 6.1 through 6.4.

6.1 Editing the Data

6.1.1 Nonwastewaters

Four sets of treatment data for waste code K101 and six sets of treatment data for waste code K102 were collected by the Agency from a treatment system consisting of rotary kiln incineration. Three samples of the treated K101 waste were collected at the end of the performance test and were analyzed. Four samples of treated K102 waste were collected during the performance test and were analyzed. The Agency evaluated the seven data sets to determine if the treatment system was well operated at the time of the sampling visit. None of the data sets were eliminated on the basis of this evaluation.

The performance data used for evaluating metals stabilization was transferred from F006.

6.1.2 Wastewaters

Five data sets were collected by the Agency from a treatment system consisting of chemical precipitation for D004. The performance data were transferred to the wastewaters in K101 and K102 based upon waste characteristics affecting performance. The

Agency evaluated the five data sets to determine if the treatment system was well operated at the time of the engineering visit.

None of the data sets were eliminated on the basis of this evaluation.

6.2 Correcting the Remaining Data

All data values were corrected in order to take into account analytical interferences associated with the chemical make-up of the treated sample. This was accomplished by calculating an accuracy factor from the percent recoveries for the selected regulated constituents in K101 and K102. The actual recovery values and accuracy factors for the selected constituents are presented in Appendix B. The corrected concentration values for K101 and K102 nonwastewaters are shown in Tables 6-1 and 6-2. The corrected concentration values for K101 and K102 wastewaters are shown in Table 6-3. The corrected concentration values were obtained by multiplying the accuracy factors by the concentration values in the treated waste. Arithmetic average values, representing the treated waste concentration, were calculated for all constituents in K101 and K102 from the corrected concentrations.

6.3 <u>Calculating Variability Factors</u>

It is expected that in normal operation of a well-designed and well-operated treatment system there will be some variability in performance. Based on the test data, a measure of this variability is expressed by the variability factor. The methodology for calculating variability factors is explained in Appendix A of this report. Tables 6-1 through 6-3 present the results of calculations for the selected constituents in nonwastewaters and wastewaters. Appendix D of this report shows how the actual values in Tables 6-1 through 6-3 were calculated.

In instances where a selected constituent was not detected in the treated waste, the treated value for that constituent was assumed to be the detection limits. For example, both 2-nitroaniline in K101 and 2-nitrophenol in K102 were not detected in the incinerator ash or the scrubber water, and concentration values for the incinerator ash and scrubber water were set at their detection limits. This resulted in no apparent variation among the treated values and a calculated variability factor of 1.0. A variability factor of 1.0 represents test data from a process measured without variation and analytical interferences. Instead of using the calculated value of 1.0, the variability factors for 2-nitroaniline and 2-nitrophenol were fixed at 2.8 as justified in Appendix A of this document.

Table 6-1 Regulated Constituents and Calculated Treatment Standards for Organics in K101 and K102 Nonwastewaters

			_		Average		Treatment Standard
-		acy-Corrected Co Sample	Treated Waste	Variability	(mg/kg)		
BDAT Constituent	Sample Set #1	Set #2	Sample Set #3	Sample Set #4	Concentration	Factor	(Average
					(mg/kg)	(VF)	x VF)
C101 REGULATED CONSTITUENTS							
Volatile							
1 *Acetone	0.010	0.010	0.010		0.010	2.80	0.028
*Toluene	0.005	0.005	0.005		0.005	2.80	0.014
Semivolatile							
*Aniline 2	1.050	1.050	1.050		1.050	2.80	2.940
*** 2-Nitroaniline 2	5.000	5.000	5.000	•••	5.000	2.80	14.000
C102 REGULATED CONSTITUENTS							
Volatile							
*Toluene	1.500	1.500	1.500	1.500	1.500	2.80	4.200
*Total Xylenes	1.500	1.500	1.500	1.500	1.500	2.80	4.200
Semivolatile							
*** 2-Nitrophenol 3	4.760	4.760	4.760	4.760	4.760	2.80	13.328
*Phenol	1.640	1.640	1.640	1.640	1.640	2.80	4.592

a - Accuracy Correction Factors and Variability Factors were determined as discussed in Appendix A.

^{* -} Not proposed for regulation.

^{*** -} Not on BDAT List.

^{1 -} The average percent recovery for volatiles was used in the calculation of the this standard.

^{2 -} The average percent recovery for semivolatiles was used in the calculation of the this standard.

^{3 -} Percent recovery of 4-Nitrophenol was used in the calculation of the standard for 2-Nitrophenol.

Table 6-2 Regulated Constituents and Calculated Treatment Standards for Inorganics in K101 and K102 Nonwastewaters

Accuracy Corrected Constituents Concentrations in Treated Leachate (mg/l)

	Antimony	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
				-	-		-	0.04	0.03
				0.01	0.46	0.27	0.39	0.03	0.01
				0.06	0.09	0.16	0.34	0.26	0.05
				0.01	-	0.29	0.23	0.02	0.01
				0.01	0.35	0.31	0.37	0.03	0.04
				0.01	0.44	0.45	0.39	0.04	0.03
				0.01	1.4	0.35	0.41	0.11	0.02
				0.01	-	0.50	0.40	0.04	0.02
				-	-	-	0.29	0.02	0.01
verage concentration				0.017	0.55	0.33	0.35	0.066	0.024
ariability factor				3.9	6.9	2.2	1.5	4.7	3.6
freatment standard	strak	**	**	0.066	3.8	0.71	0.53	0.31	0.086

^{** -} Deferred for proposed regulation until later date.

Table 6-3 Regulated Constituents and Calculated Treatment Standards for K101 and K102 Wastewaters

Accuracy-Corrected Concentration (mg/l)						Average Treated		Treatment Standard
Sample Set #1	Sample Set #2	Sample Set #3	Sample Set #4	Sample Set #5	Sample Set #6	Waste Concentration (mg/l)	Variability Factor (VF)	(mg/l) (Average x VF)
0.095	0.095	0.095	0.095	••-		0.095	2.80	0.266
0.010	0.010	0.010	0.010	0.010	0.010	0.010	2.80	0.028
								**
0.291	1.400	0.359	0.293	0.308		0.530	3.842	2.036
0.085	0.085	0.085	0.085	0.085		0.085	2.80	0.238
0.006	0.035	0.030	0.012	0.030		0.023	4.783	0.110
0.001	0.004	0.009	0.004	0.006		0.005	2.80	0.027
	0.095 0.010 0.291 0.085 0.006	Sample Sample Set #1 Set #2 0.095 0.095 0.010 0.010 0.291 1.400 0.085 0.085 0.006 0.035	Sample Set #1 Sample Set #2 Sample Set #3 0.095 0.095 0.095 0.010 0.010 0.010 0.291 1.400 0.359 0.085 0.085 0.085 0.006 0.035 0.030	Sample Set #1 Sample Set #2 Sample Set #3 Sample Set #4 0.095 0.095 0.095 0.095 0.010 0.010 0.010 0.010 0.291 1.400 0.359 0.293 0.085 0.085 0.085 0.085 0.006 0.035 0.030 0.012	Sample Set #1 Sample Set #2 Sample Set #3 Sample Set #4 Sample Set #5 0.095 0.095 0.095 0.095 0.010 0.010 0.010 0.010 0.010 0.291 1.400 0.359 0.293 0.308 0.085 0.085 0.085 0.085 0.085 0.006 0.035 0.030 0.012 0.030	Sample Set #1 Sample Sample Sample Set #3 Set #4 Sample Sample Set #6 0.095 0.095 0.095 0.010 0.010 0.010 0.010 0.010 0.010 0.291 1.400 0.359 0.293 0.308 0.085 0.085 0.085 0.085 0.006 0.035 0.030 0.012 0.030	Nample Sample Sample Sample Sample Sample Waste	Sample S

^{* - 2-}Nitroaniline is proposed for regulation in K101 only. 2-Nitrophenol is proposed for regulation in K102 only.

^{** -} Deferred for proposed regulation until later date.

^{*** -} Not on BDAT List.

^{1 -} The average percent recovery of all semivolatiles was used in the calculation of the standard for 2-Nitroaniline.

^{2 -} Percent recovery of 4-Nitrophenol was used in the calculation of the standard for 2-Nitrophenol.

^{3 -} Performance data for metals were transferred from D004 (see Section 5 of the Onsite Engineering Report for D004).

6.4 Calculating the Treatment Standards

The treatment standards for the selected constituents were calculated by multiplying the variability factors by the average concentration values for the treated waste. The treatment standards for K101/K102 nonwastewaters are presented in Tables 6-1 and 6-2. The treatment standards for K101/K102 wastewaters are presented in Table 6-3.

6.4.1 Nonwastewaters

No performance data were available for the treatment of metals in K101 and K102 nonwastewaters. The Agency, therefore, decided to transfer performance data from the treatment of wastes which were determined to be similar to K101 and K102 nonwastewaters based on waste characteristics affecting performance. The nonwastewater performance data for K101 and K102 were transferred from treatment data for EPA hazardous waste code F006. Table 6-2 provides treatment standards for proposed regulated constituents in F006. The concentrations of metals in the untreated F006 waste were compared to metal concentrations in K101/K102 nonwastewaters. Data from F006 were transferred on a metal-specific basis, provided the concentration of metal in the untreated F006 was greater than in the untreated K101 and K102. In this manner performance data were transferred for six out of nine proposed metals in K101 and K102 nonwastewaters. They are

as follows: cadmium, chromium, copper, lead, nickel, and zinc. Performance data for the three deferred metals, antimony, arsenic, and barium were not transferred from F006 because either the constituents existed at much higher concentrations in the untreated K101 and K102 nonwastewaters than in untreated F006 nonwastewater or because F006 performance data did not show significant treatment. The Agency is investigating other treatment techniques for these three metals, and is reserving the antimony, arsenic and barium standards for a future date.

The BDAT nonwastewater treatment standards for waste code K101 and K102 are as follows:

Constituent	Total Composition (mg/kg)	TCLP (mg/l)		
2-nitroaniline*	14.000	N/A		
2-nitrophenol**	13.328	N/A		
Antimony	N/A	deferred		
Arsenic	N/A	deferred		
Barium	N/A	deferred		
Cadmium	N/A	0.066		
Chromium	N/A	3.8		
Copper	N/A	0.71		
Lead	N/A	0.53		
Nickel	N/A	0.31		
Zinc	N/A	0.086		

N/A = Not Applicable

^{*} Regulated in K101 only

^{**} Regulated in K102 only

The Agency has also calculated treatment standards for BDAT list organics which are present in untreated K101 in lower concentrations than 2-nitroaniline, and in untreated K102 which are present at lower concentrations than 2-nitrophenol (see Table 6-1). These calculated standards are as follows:

	TREATMENT STANDARD				
Organic Constituent	K101 (mg/kg)	K102			
	(mg/kg)	(mg/kg)			
Acetone	0.028	NR			
Toluene	0.014	4.200			
Aniline	2.940	NR			
Total Xylenes	NR	4.200			
Phenol	NR	4.592			

NR = Not regulated since it is not present at treatable levels.

If the Agency considers regulating BDAT list organics which are present in untreated K101 and K102 at lower concentration levels than 2-nitroaniline and 2-nitrophenol, then acetone, toluene, and aniline in K101, and toluene, total xylenes, and phenol in K102 would be the constituents under consideration.

6.4.2 Wastewaters

No performance data were available for the treatment of K101 and K102 wastewaters. The Agency, therefore, decided to transfer performance data from the treatment of wastes which were determined to be similar to K101 and K102 wastewaters based on

waste characteristics affecting performance. The wastewater performance data for waste codes K101 and K102 were transferred from treatment data for D004. Table 6-3 provides treatment standards for proposed regulated metals in D004. concentrations of metals in the untreated characteristic waste D004 and K101/K102 wastewaters were compared, and performance data from D004 were transferred to K101 and K102 on a metalspecific basis, provided the concentration of the metal in the untreated characteristic waste D004, was greater than in untreated K101 and K102. In this manner performance data were transferred for four of the five proposed metals in K101 and K102 wastewaters, namely arsenic, cadmium, lead, and mercury. Performance data for the other regulated metal in K101 and K102 wastewaters, namely antimony, was not transferred from D004 because antimony existed at a much higher concentration in the untreated K101 and K102 wastewaters than in untreated D004 wastewaters. 1 Therefore, the Agency reserves the antimony standard for a future date.

^{1.} Onsite Engineering Report for Salsbury Laboratories for D004. Section 5.

The BDAT wastewater treatment standards for K101 and K102 are as follows:

Constituent	Total Composition (mg/l)				
2-Nitroaniline	0.266				
2-Nitrophenol	0.028				
Antimony	deferred				
Arsenic	2.036				
Cadmium	0.238				
Lead	0.110				
Mercury	0.027				

7.0 REFERENCES

- U.S. EPA. (1988). Onsite Engineering Report of Treatment
 Technology Performance and Operation for John Zink Company
 for K101 Tulsa, OK.
- U.S. EPA. (1988). Onsite Engineering Report of Treatment
 Technology Performance and Operation for John Zink Company
 for K102 Tulsa, OK.
- U.S. EPA. (1988). Onsite Engineering Report of Treatment Technology Performance and Operation for Salsbury Laboratories - Charles City, IA.
- U.S. EPA. (1988). BDAT Background Document for F006.

REFERENCES - INCINERATION

- Ackerman D.G., J.F. McGaughey, D.E. Wagoner, "At Sea Incineration of PCB-Containing Wastes on Board the M/T Vulcanus." USEPA 600/7-83-024, April 1983.
- Bonner T.A., et al., <u>Engineering Handbook for Hazardous Waste Incineration</u>. SW889. Prepared by Monsanto Research Corporation for U.S. EPA, NTIS PB 81-248163. June 1981.
- Mitre Corp. "Guidance Manual for Waste Incinerator Permits." NTIS PB84-100577. July 1983.
- Novak R.G., W.L. Troxler, T.H. Dehnke, "Recovering Energy from Hazardous Waste Incineration." <u>Chemical Engineering Progress</u> 91:146 (1984).
- Oppelt E.T., "Incineration of Hazardous Waste." JAPCA, Volume 37, No. 5. May 1987.
- Santoleri J.J., "Energy Recovery-A By-Product of Hazardous Waste Incineration Systems." In Proceedings of the 15th Mid-Atlantic Industrial Waste Conference on Toxic and Hazardous Waste, 1983.
- USEPA (1986). <u>Best Demonstrated Available Technology (BDAT)</u>
 <u>Background Document for F001-F005 Spent Solvents</u>, Vol. 1.
 EPA/530-SW-86-056, November, 1986.

Vogel G., et al., "Incineration and Cement Kiln Capacity for Hazardous Waste Treatment." In Proceedings of the 12th Annual Research Symposium. Incineration and Treatment of Hazardous Wastes. Cincinnati, Ohio. April 1986.

REFERENCES - METALS STABILIZATION

- Ajax Floor Products Corp. n.d. Product literature: technical data sheets, Hazardous Waste Disposal System. P.O. Box 161, Great Meadows, N.J. 07838.
- Austin, G.T. 1984. <u>Shreve's Chemical Process Industries</u>, 5th ed. New York: McGraw-Hill.
- Bishop, P.L., S.B. Ransom, and D.L. Grass. 1983. "Fixation Mechanisms in Solidification/Stabilization of Inorganic Hazardous Wastes." In Proceedings of the 38th Industrial Waste Conference, 10-12 May 1983, at Purdue University, West Lafayette, Indiana.
- Conner, J.R. 1986. "Fixation and Solidification of Wastes." Chemical Engineering. Nov. 10, 1986.
- Cullinane, M.J:, Jr., L.W. Jones, and P.G. Malone. 1986.

 <u>Handbook for Stabilization/Solidification of Hazardous</u>

 <u>Waste</u>. U.S. Army Engineer Waterways Experiment Station.

 EPA Report No. 540/2-86/001. Cincinnati, Ohio: U.S.

 Environmental Protection Agency.
- Electric Power Research Institute. 1980. FGD Sludge Disposal Manual, 2nd ed. Prepared by Michael Baker Jr., Inc. EPRI CS-1515 Project 1685-1 Palo Alto, California: Electric Power Research Institute.
- Mishuck, E., D.R. Taylor, R. Telles, and H. Lubowitz. 1984.
 "Encapsulation/Fixation (E/F) mechanisms." Report No.
 DRXTH-TE-CR-84298. Prepared by S-Cubed under Contract No.
 DAAK11-81-C-0164.
- Pojasek R.B. 1979. "Solid-Waste Disposal: Solidification." Chemical Engineering 86(17): pp. 141-145.
- USEPA. 1980. U.S. Environmental Protection Agency. U.S. Army Engineer Waterways Experiment Station. Guide to the disposal of chemically stabilized and solidified waste. Prepared for MERL/ORD under Interagency Agreement No. EPA-IAG-D4-0569. PB81-181505. Cincinnati, Ohio.

REFERENCES - CHEMICAL PRECIPITATION

- Cherry, Kenneth F. 1982. <u>Plating Waste Treatment</u>. Ann Arbor, MI; Ann Arbor Science, Inc. pp. 45-67.
- Cushnie, George C., Jr. 1985. <u>Electroplating Wastewater</u>
 <u>Pollution Control Technology</u>. Park Ridge, NJ; Noyes
 Publications. pp. 48-62, 84-90.
- Cushnie, George C., Jr. 1984. <u>Removal of Metals from Wastewater:</u>
 <u>Neutralization and Precipitation</u>. Park Ridge, NJ; Noyes
 Publications. pp. 55-97.
- Gurnham, C.F. 1955. <u>Principles of Industrial Waste Treatment</u>. New York; John Wiley and Sons. pp. 224-234.
- Kirk-Othmer. 1980. <u>Encyclopedia of Chemical Technology</u>, 3rd ed., "Flocculation", Vol. 10. New York; John Wiley and Sons. pp. 489-516.
- U.S. EPA, "Treatability Manual," Volume III, Technology for Control/Removal of Pollutants, EPA-600/2-82-001C, January 1983. pp. 111.3.1.3-2.

APPENDIX A - STATISTICAL ANALYSIS

A.1 F Value Determination for ANOVA Test

As noted earlier in Section 1.0, EPA is using the statistical method known as analysis of variance in the determination of the level of performance that represents "best" treatment where more than one technology is demonstrated. This method provides a measure of the differences between data sets. If the differences are not statistically significant, the data sets are said to be homogeneous.

If the Agency found that the levels of performance for one or more technologies are not statistically different (i.e., the data sets are homogeneous), EPA would average the long term performance values achieved by each technology and then multiply this value by the largest variability factor associated with any of the acceptable technologies. If EPA found that one technology performs significantly better (i.e., the data sets are not homogeneous), BDAT would be the level of performance achieved by the best technology multiplied by its variability factor.

To determine whether any or all of the treatment performance data sets are homogeneous using the analysis of variance method, it is necessary to compare a calculated "F value" to what is known as a "critical value." (See Table A-1.) These critical

values are available in most statistics texts (see, for example, Statistical Concepts and Methods by Bhattacharyya and Johnson, 1977, John Wiley Publications, New York).

Where the F value is less than the critical value, all treatment data sets are homogeneous. If the F value exceeds the critical value, it is necessary to perform a "pair wise F" test to determine if any of the sets are homogeneous. The "pair wise F" test must be done for all of the various combinations of data sets using the same method and equation as the general F test.

The F value is calculated as follows:

- All data are natural logtransformed.
- The sum of the data points for each data set is computed (T;).
- (iii) The statistical parameter known as the sum of the squares between data sets (SSB) is computed:

$$SSB = \begin{bmatrix} k & T_i^2 \\ \sum_{i=1}^{K} \left(\frac{T_i^2}{n_i}\right) \end{bmatrix} - \begin{bmatrix} k & T_i \\ \sum_{i=1}^{K} T_i \\ N \end{bmatrix}^2$$

where:

k = number of treatment technologies

n = number of data points for technology i
N = number of data points for all technologies

T_i = sum of natural logtransformed data points for each technology.

(iv) The sum of the squares within data sets (SSW) is computed:

$$SSW = \begin{bmatrix} k & n_i \\ \sum \sum_{i=1}^{r} \sum_{j=1}^{r} x^2_{i,j} \end{bmatrix} - \sum_{i=1}^{k} \left(\frac{T_i^2}{n_i} \right)$$

where:

x_{i,j} = the natural logtransformed observations (j) for treatment technology (i).

- (v) The degrees of freedom corresponding to SSB and SSW are calculated. For SSB, the degree of freedom is given by k-1. For SSW, the degree of freedom is given by N-k.
- (vi) Using the above parameters, the F value is calculated as follows:

$$F = MSW$$

where:

MSB = SSB/(k-1) and

MSW = SSW/(N-k).

A computational table summarizing the above parameters is shown below.

Computational Table for the F Value

Source	Degrees of freedom	Sum of squares	Mean square	F
Between	K-1	SSB	MSB = SSB/k-1	MSB/MSW
Within	N-k	SSW	MSW = SSW/N-k	

Below are three examples of the ANOVA calculation. The first two represent treatment by different technologies that achieve statistically similar treatment; the last example represents a case where one technology achieves significantly better treatment than the other technology.

Table A-1

F Distribution at the 95 Percent Confidence Level

Fo 35

Denominator degrees of	Numerator degrees of freedom								
freedom	1	2	3	4	5	6	7	8	9
1	161 4	1995	215 7	224 6	230 2	234.0	236 8	238 9	240 5
2	18 51	1900	1916	19 25	19.30	19.33	19 35	19 37	19 38
3	10 13	9 55	9 28	912	9 01	8.94	8 89	8 85	8 8 1
4	7 71	6 94	6 59	6.39	6.26	6.16	6.09	6 04	6 00
5	6.61	5.79	5.41	5.19	5.05	4 95	4 88	4 82	4.77
6	5 99	5.14	4 76	4 53	4 39	4 28	4 21	415	4 10
7	5 59	4 74	4 35	412	3.97	3.87	3.79	3.73	3 68
8	5.32	4 46	4 07	3.84	3.69	3.58	3.50	3.44	3.39
9	, 5.12	4 26	3.36	3 63	3.48	3.37	3 29	3.23	3.18
10	4 96	4 10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4 84	3 98	3 59	3.36	3.20	3.09	3.01	2.95	2.90
12	4 75	3 89	3.49	3.26	3.11	3.00	2.91	2.85	2 80
13	4 6 7	3 81	3 41	3.18	3.03	2.92	2.83	2.77	2.71
14	4 60	3 74	3 34	3.11	2.96	2.85	2.76	2.70	2.6
15	4 54	3.68	3 29	3 06	2.90	2.79	2.71	2.64	2.59
16	4 49	3 63	3 24	3 01	2.85	2.74	2.66	2.59	2.54
17	4 45	3 59	3.20	2 96	2.81	2.70	2.61	2.55	2.49
18	4 41	3 55	316	2.93	2.77	2.66	2.58	2 51	2.48
19	4 38	3.52	3.13	2 90	2.74	2.63	2.54	2.48	2.43
20	4 35	3 49	3 10	2.87	2.71	2.60	2.51	2.45	2.39
21	4 32	3 47	3 07	2 84	2.68	2.57	2.49	2.42	2.3
22	4 30	3.44	3 05	2.82	2.66	2.55	2.46	2.40	2 34
23	4 28	3.42	3 03	2.80	2.64	2.53	2.44	2.37	2.33
24	4 26	3.40	3 01	2.78	2.62	2.51	2.42	2.36	2.30
25	4 24	3.39	2.99	2.76	2 60	2 49	2.40	2.34	2.28
26	4 23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.2
27	4 21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.2
28	4 20	3.34	2.95	2 71	2.56	2.45	2.36	2.29	2.2
29	418	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.23
30	4 1 7	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.2
40	4 08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.1
60	4 00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.0
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1 9
89	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1 8

Example 1
Methylene Chloride

	Steam stripping		2		Biological trea	<u>atment</u>	
influent	Effluent	ln(effluent)	[ln(effluent)] ²	Influent	Effluent	<pre>ln(effluent)</pre>	[ln(effluent)]
(mg/l)	(mg/l)			(mg/l)	(mg/l)		
1550.00	10.00	2.30	5.29	1960.00	10.00	2.30	5.29
1290.00	10.00	2.30	5.29	2568.00	10.00	2.30	5.29
1640.00	10.00	2.30	5.29	1817.00	10.00	2.30	5.29
5100.00	12.00	2.48	6.15	1640.00	26.00	3.26	10.63
1450.00	10.00	2.30	5.29	3907.00	10.00	2.30	5.29
4600.00	10.00	2.30	5.29				
1760.00	10.00	2.30	5.29				
2400.00	10.00	2.30	5.29				
4800.00	10.00	2.30	5.29				
12100.00	10.00	2.30	5.29				
Sum: -	-	23.18	53.76	-	•	12.46	31.79
Sample Siz	:e:	•					
10	10	, 10	-	5	5	5	•
lean:							
3669	10.2	2.32	-	2378	13.2	2.49	-
Standard [eviation:						
3328.67	.63	.06	-	923.04	7.15	.43	•
/ariabili	ty Factor:						
	1.15	•	•	-	2.48	-	

ANOVA Calculations:

$$SSB = \begin{bmatrix} k \\ \Sigma \\ 1=1 \end{bmatrix} \begin{bmatrix} \frac{\tau_1^2}{n_1} \end{bmatrix} - \begin{bmatrix} \begin{bmatrix} k \\ \Sigma \\ 1=1 \end{bmatrix}^2 \\ \frac{\kappa}{N} \end{bmatrix}$$

$$SSW = \begin{bmatrix} k \\ \Sigma \\ i=1 \end{bmatrix} \begin{bmatrix} n_1 \\ \Sigma^2 \\ i=1 \end{bmatrix} \times 2_i, j \end{bmatrix} - \frac{k}{i=1} \begin{bmatrix} \frac{\tau_1^2}{n_1} \end{bmatrix}$$

MSB = SSB/(k-1)

MSW = SSW/(N-k)

Example 1 (continued)

F = MSB/MSW

where:

k = number of treatment technologies

n; = number of data points for technology i

N = number of natural log transformed data points for all technologies

 T_i = sum of log transformed data points for each technology

 X_{ij} = the nat. log transformed observations (j) for treatment technology (i)

$$n_1 = 10, n_2 = 5, N = 15, k = 2, T_1 = 23.18, T_2 = 12.46, T = 35.64, T = 1270.21$$

$$\tau_1^2 = 537.31 \quad \tau_2^2 = 155.25$$

$$SSB = \left(\frac{537.31}{10} + \frac{155.25}{5}\right) - \frac{1270.21}{15} = 0.10$$

SSW =
$$(53.76 + 31.79) - \left(\frac{537.31}{10} + \frac{155.25}{5}\right)$$
 = 0.77

MSB = 0.10/1 = 0.10

$$MSW = 0.77/13 = 0.06$$

$$F = \frac{0.10}{0.06} = 1.67$$

ANOVA Table

	Degrees of			
Source	freedom	SS	MS	F
Between(B)	1	0.10	0.10	1.67
Within(W)	13	0.77	0.06	

The critical value of the F test at the 0.05 significance level is 4.67. Since the F value is less than the critical value, the means are not significantly different (i.e., they are homogeneous).

Note: All calculations were rounded to two decimal places. Results may differ depending upon the number of decimal places used in each step of the calculations.

Example 2
Trichloroethylene

<u>s</u>	team stripping		2		Biological trea	atment	
Influent	Effluent	ln(effluent)	[ln(effluent)]	Influent	Effluent	<pre>ln(effluent)</pre>	[ln(effluent)]
(mg/l)	(mg/l)			(mg/l)	(mg/l)		
1650.00	10.00	2.30	5.29	200.00	10.00	2.30	5.29
5200.00	10.00	2.30	5.29	224.00	10.00	2.30	5.29
5000.00	10.00	2.30	5.29	134.00	10.00	2.30	5.29
1720.00	10.00	2.30	5.29	150.00	10.00	2.30	5.29
1560.00	10.00	2.30	5.29	484.00	16.25	2.79	7.78
10300.00	10.00	2.30	5.29	163.00	10.00	2.30	5.29
210.00	10.00	2.30	5.29	182.00	10.00	2.30	5.29
1600.00	27.00	3.30	10.89				
204.00	85.00	4.44	19.71				
160.00	10.00	2.30	5.29				
Sum: -	•	26.14	72.92	-	-	16.59	39.52
Sample Size:							
10	10	. 10	•	7	7	7	•
lean:							
2760	19.2	2.61	•	220	10.89	2.37	-
Standard Dev	viation:						
3209.6	23.7	.71	•	120.5	2.36	.19	-
Variability	Factor:				1.53		

ANOVA Calculations:

$$SSB = \begin{bmatrix} k \\ \Sigma \\ 1=1 \end{bmatrix} \begin{bmatrix} T_1^2 \\ \overline{n_1} \end{bmatrix} - \begin{bmatrix} \begin{bmatrix} k \\ \Sigma \\ 1=1 \end{bmatrix}^2 \\ N \end{bmatrix}$$

$$SSW = \begin{bmatrix} k \\ \Sigma \\ 1=1 \end{bmatrix} \begin{bmatrix} n_1^i \\ j=1 \end{bmatrix} \times 2_{1,j} \end{bmatrix} - k \\ \Sigma \\ 1=1 \end{bmatrix} \begin{bmatrix} T_1^2 \\ \overline{n_1} \end{bmatrix}$$

MSB = SSB/(k-1)

MSW = SSW/(N-k)

F = MSB/MSW

where:

k = number of treatment technologies

 n_i = number of data points for technology i

N = number of data points for all technologies

T; = sum of natural log transformed data points for each technology

 X_{ij} = the natural log transformed observations (j) for treatment technology (i)

$$N_1 = 10$$
, $N_2 = 7$, $N = 17$, $k = 2$, $T_1 = 26.14$, $T_2 = 16.59$, $T = 42.73$, $T^2 = 1825.85$, $T_1^2 = 683.30$,

$$T_2^2 = 275.23$$

SSB =
$$\left(\frac{683.30}{10} + \frac{275.23}{7}\right) - \frac{1825.85}{17} = 0.25$$

SSW =
$$(72.92 + 39.52) - \left(\frac{683.30}{10} + \frac{275.23}{7}\right)$$
 = 4.79

$$MSB = 0.25/1 = 0.25$$

$$MSW = 4.79/15 = 0.32$$

$$F = \frac{0.25}{0.32} = 0.78$$

ANOVA Table

	Degrees of				
Source	freedom	SS	MS	F	
Between(B)	1	0.25	0.25	0.78	
Within(W)	15	4.79	0.32		

The critical value of the F test at the 0.05 significance level is 4.54. Since the F value is less than the critical value, the means are not significantly different (i.e., they are homogeneous).

Note: All calculations were rounded to two decimal places. Results may differ depending upon the number of decimal places used in each step of the calculations.

Example 3 Chlorobenzene

nfluent	Effluent	<pre>ln(effluent)</pre>	[ln(effluent)] ²	Biological tr Influent	Effluent	ln(effluent)	ln[(effluent)]
(mg/l)	(mg/l)			(mg/l)	(mg/l)		
7200.00	80.00	4.38	19.18	9206.00	1083.00	6.99	48.86
6500.00	70.00	4.25	18.06	16646.00	709.50	6.56	43.03
6075.00	35.00	3.56	12.67	49775.00	460.00	6.13	37.58
3040.00	10.00	2.30	5.29	14731.00	142.00	4.96	24.60
				3159.00	603.00	6.40	40.96
				6756.00	153.00	5.03	25.30
				3040.00	17.00	2.83	8.01
um:		14.49	Er 20			70.00	220.74
-	•	14.49	55.20	•	•	38.90	228.34
ample Size:							
4	4	4	•	7	7	7	•
		•					
ean:							
5703	49	3.62	-	14759	452.5	5.56	•
tandard Dev	iation:						
1835.4	32.24	.95		16311.86	379.04	1.42	-
ariability	Factor:						
-	7.00	-	-	-	15.79	•	-

ANOVA Calculations:

SSB =
$$\begin{bmatrix} \frac{k}{\Sigma} & \left(\frac{T_1^2}{n_1}\right) \\ \frac{k}{\Sigma} & \left(\frac{T_1^2}{n_1}\right) \end{bmatrix} = \left(\frac{\left(\frac{k}{\Sigma} & T_1\right)^2}{N}\right)$$
SSW =
$$\begin{bmatrix} \frac{k}{\Sigma} & \frac{n}{\Sigma} & x^2 \\ \frac{n}{\Sigma} & y^2 \end{bmatrix} - \frac{k}{\Sigma} & \left(\frac{T_1^2}{n_1}\right)$$

MSB = SSB/(k-1)

MSW = SSW/(N-k)

F = MSB/MSW

where,

k = number of treatment technologies

n, = number of data points for technology i

N = number of data points for all technologies

T; = sum of natural log transformed data points for each technology

 X_{ij} = the natural log transformed observations (j) for treatment technology (i)

$$N_1 = 4$$
, $N_2 = 7$, $N_1 = 11$, $k_1 = 2$, $k_2 = 14.49$, $k_3 = 38.90$, $k_4 = 53.39$, $k_5 = 2850.49$, $k_6 = 209.96$

$$T_2^2 = 1513.21$$

$$SSB = \left(\frac{209.96}{4} + \frac{1513.21}{7}\right) - \frac{2850.49}{11} = 9.52$$

SSW =
$$(55.20 + 228.34) - \left(\frac{209.96}{4} + \frac{1513.21}{7}\right)$$
 = 14.88

MSB = 9.52/1 = 9.52

MSW = 14.88/9 = 1.65

F = 9.52/1.65 = 5.77

ANOVA Table

Source	Degrees of freedom	ss	MS	F
Between(B)	1	9.53	9.53	5.77
Within(W)	9	14.89	1.65	

The critical value of the F test at the 0.05 significance level is 5.12. Since the F value is larger than the critical value, the means are significantly different (i.e., they are heterogeneous).

Note: All calculations were rounded to two decimal places. Results may differ depending upon the number of decimal places used in each step of the calculations.

A.2. Variability Factor

 C_{99} $VF = \overline{Mean}$

where:

VF = estimate of daily maximum variability factor determined from a sample population of daily data.

C₉₉ = Estimate of performance values for which 99 percent of the daily observations will be below. C₉₉ is calculated using the following equation:

C₉₉ = Exp(y + 2.33 Sy) where y and Sy are the mean and standard deviation, respectively, of the logtransformed data.

Mean = average of the individual performance values.

EPA is establishing this figure as an instantaneous maximum because the Agency believes that on a day-to-day basis the waste should meet the applicable treatment standards. In addition, establishing this requirement makes it easier to check compliance on a single day. The 99th percentile is appropriate because it accounts for almost all process variability.

In several cases, <u>all</u> the results from analysis of the residuals from BDAT treatment are found at concentrations less than the detection limit. In such cases, all the actual concentration values are considered unknown and hence, cannot be used to estimate the variability factor of the analytical results. Below is a description of EPA's approach for calculating the variability factor for such cases with all concentrations below the detection limit.

It has been postulated as a general rule that a lognormal distribution adequately describes the variation among concentrations. Therefore, the lognormal model has been used routinely in the EPA development of numerous regulations in the Effluent Guidelines program and is being used in the BDAT program. The variability factor (VF) was defined as the ratio of the 99th percentile (C_{99}) of the lognormal distribution to its arithmetic mean (Mean).

$$VF = \frac{C_{99}}{Mean} \tag{1}$$

The relationship between the parameters of the lognormal distribution and the parameters of the normal distribution created by taking the natural logarithms of the lognormally-distributed concentrations can be found in most mathematical statistics texts (see for example: Distribution in Statistics-Volume 1 by Johnson and Kotz, 1970). The mean of the lognormal distribution can be expressed in terms of the mean () and standard deviation () of the normal distribution as follows:

$$C_{99} = \text{Exp} (\mu + 2.3340)$$
 (2)

$$Mean = Exp (\mu + .54\sigma^2)$$
 (3)

Substituting (2) and (3) in (1) the variability factor can then be expressed in terms of σ as follows:

$$VF = Exp (2.33 \nabla - .54 \nabla^2)$$
 (4)

For residuals with concentrations that are not all below the detection limit, the 99th percentile and the mean can be estimated from the actual analytical data and accordingly, the variability factor (VF) can be estimated using equation (1). For residuals with concentrations that are below the detection limit, the above equations can be used in conjunction with the assumptions below to develop a variability factor.

Step 1: The actual concentrations follow a lognormal distribution. The upper limit (UL) is equal to the detection limit. The lower limit (LL) is assumed to be equal to one tenth of the detection limit. This assumption is based on the fact that data from well-designed and well-operated treatment systems generally falls within one order of magnitude.

Step 2: The natural logarithms of the concentrations have a normal distribution with an upper limit equal to ln (UL) and a lower limit equal to ln (LL).

Step 3: The standard deviation (\bigcirc) of the normal distribution is approximated by

$$\mathcal{O} = [(\ln (UL) - \ln (LL))] / [(2)(2.33)] = [\ln(UL/LL)] / 4.66$$

when LL = (0.1)(UL) then $\mathcal{O} = (\ln 10) / 4.66 = 0.494$

Step 4: Substitution of the value from Step 3 in equation (4) yields the variability factor, VF.

VF = 2.8

APPENDIX B - ANALYTICAL QA/QC

The analytical methods used for analysis of the regulated constituents identified in Section 5 are listed in Table B-1.

SW-846 methods (EPA's <u>Test Methods for Evaluating Solid Waste;</u>

<u>Physical/Chemical Methods, SW-846</u>, Third Edition, November 1986) are used in most cases for determining total waste concentrations.

Deviations from SW-846 methods required to analyze the sample matrix are listed in Table B-2. These deviations are approved methods for determining constituent concentrations. SW-846 also allows for the use of alternative or equivalent procedures or equipment; these are described in Tables B-3 through B-6. These alternatives or equivalents included use of alternative sample preparation methods and/or use of different extraction techniques to reduce sample matrix interferences.

The accuracy determination for a constituent is based on the matrix spike recovery values. Table B-7 present the matrix spike recovery values for total waste concentrations of 2-nitroaniline and 2-nitrophenol for K101 and K102, respectively, for the EPA-collected data. Because 2-nitroaniline matrix spike recoveries were not collected, the average of the percent recoveries equal to or greater than 20% for all semivolatiles was used as the

percent recovery for 2-nitroaniline. Since matrix spike recoveries for 2-nitrophenol were not available, the percent recoveries for the isomer 4-nitrophenol were used.

The accuracy correction factors for the regulated constituents for the treatment residuals are presented in Table B-7 through B-9. The accuracy correction factors were determined in accordance with the general methodology presented in the Introduction. For example, for 2-nitroaniline, the average of the actual spike recovery data for all semivolatiles obtained for the analysis of liquid matrices and the lowest average percent recovery value was used to calculate the accuracy correction factor. An example of the calculation of the corrected concentration value for 2-nitroaniline is shown below.

Analytical	Average	Correction	Corrected
<u>Value</u>	% Recovery	<u>Factor</u>	Value
2.0 mg/kg	40	$\frac{100}{40} = 2.50$	$2.50 \times 2.0 = 5.000 \text{ mg/kg}$

Table B-1 Analytical Methods for Regulated Constituents

Regulated Constituent	Analytical Method	Method Number	Reference
<u>Semivolatiles</u>			
2-Nitroaniline 2-Nitrophenol	Continuous Liquid/Liquid Extraction	3520	1
	Soxhlet Extraction	3540	1
	Gas Chromatography/Mass Spectrometry Column Technique	8270	1
<u>Metals</u>			
Antimony Arsenic Barium Cadmium Chromium Copper Nickel	Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame Atomic Absorption Spectroscopy (AA) or Inductivity Coupled Plasma Atomic Emission Spectroscopy (1	3010	1
Zinc	Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Furnace Atomic Absorption Spectroscopy (AA)	3020	1
	Acid Digestion of Sediments, Sludges, and Soils	3050	1
	Acid Digestion for Metals	3060	2
	Inductively Coupled Plasma Atomic Emission Spectroscopy	6010	1
Lead	Lead (AA, Furnace Technique)	7421	1
Mercury	Mercury in Liquid Waste (Manual Cold-Vapor Technique)	7471	1
Selenium	Selenium (AA, Furnace Technique)	7740	1

^{1 -} Environmental Protection Agency. 1986. Test Methods for Evaluating Solid Waste. Third Edition. U. S. EPA. Office of Solid Waste and Emergency Response. November 1986.

^{2 -} Environmental Protection Agency. 1982. Test Methods for Evaluating Solid Waste. Second Edition. U. S. EPA. Office of Solid Waste and Emergency Response. September 1982.

Table 8-2 Deviations from SW-846

	Ana lys is	Hethod	SW-846 specifications	Deviation from SW-846	Rationale for deviation
1.	Acid Digestion for metals analyzed	3010 3020	Digest 100 ml of sample in a conical beaker.	Initial sample volume of 50 ml is digested in Griffin straight-side beakers. All acids and peroxides are halved.	Sample volume and reagents are reduced in half; therefore, time required to reduce sample to near dryness is reduced. However, this procedures produces no impact on the precision and accuracy of the data.
2.	Selenium Digestion	7740	Pipet 5 ml of digested solution into 10 ml volumetric flank; add 1 ml of the 1% nickel nitrate solution and dilute to 10 ml with Type II water. An aliquot is then injected into the instrument.	Digestate is brought to original volume and the nickel nitrate solution is added at the time of analysis. One ml of sample digestate and standards have 0.02 ml of 5% NiNO3 solution added to them.	This procedure reduces time required to complete dilution procedure and produces no impact on the precision and accuracy of the data. This procedure also allows the laboratory to store only the concentrated digestates.

a - Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101 and K102. Table 6-6.

Table 8-3 Specific Procedures or Equipment Used in Extraction of Organic Compounds When Alternatives or Equivalents are Allowed in the SW-846 Methods

Analysis	SW-846 method	Sample aliquot	Alternatives or equivalents allowed by SW-846 methods	Specific procedures or equipment used
Purge and Irap	5030	5 milliliters of liquid 1 gram of solid	• The purge and trap device to be used is specified in the method in figure 1, the desorber to be used is described in Figures 2 and 3, and the packing materials are described in Section 4.10.2. The method allows equivalents of this equipment or materials to be used.	• The purge and trap equipment and the desorber used were as specified in SW-846. The purge and trap equipment is a Teckmar LSC-2 with standard purging chambers (Supelco cat. 2-0293). The packing materials for the traps were 1/3 silica gel and 2/3 2,6-diphenylene.
			 The method specifies that the trap must be at least 25 cm long and have an inside diameter of at least 0.105 cm. 	 The length of the trap was 30 cm and the diameter was 0.105 cm.
			• The surrogates recommended are toluene-d8.4-bromofluorobenzene, and 1.2-dichloroethane-d4. The recommended concentration level is 50 µg/1.	 The surrogates were added as specified in SW-846.
Continuous Liquid- Liquid Extraction	3520	1 liter of fiquid	 Acid and base/neutral extracts are usually combined before analysis by GC/MS. Under some situations, however, they may be extracted and analyzed separately. 	 Acid and base/neutral extracts were combined.
			 The base/neutral surrogates recommended are 2-fluorobiphenyl, nitrobenzene-d5, terphenyl-d14. The acid surrogates recommended are 2-fluorophenol, 2,4,6-tribromophenol, and 	 Surrogates were the same as those recommended by SW-846, with the exception that phenol-d5 was substituted for phenol-d6. The concentrations used were the concentrations recommended in SW-846

phenol-d6. Additional compounds

Analysis	SW-846 method	Sample aliquot	Alternatives or equivalents allowed by SW-846 methods	Specific procedures or equipment used
Continuous Liquid- Liquid Extraction (Continued)			may be used for surrogates. The recommended concentrations for low-medium concentration level samples are 100 ppm for acid surrogates and 200 ppm for base/neutral surrogates. Volume of surrogate may be adjusted.	,
Soxhlet Extraction	3540	l gram of solid	 The recommended surrogates and their concentrations are the same as for Hethod 3520. Sample grinding may be required for sample not passing through a 1 mm standard sieve or a 1 mm 	 The surrogates used and their concentration levels are the sam as for Method 3520. Sample grinding was not required

a - Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101 and K102. Table 6-7.

Table 8-4 Specific Procedures or Equipment Used in Extraction of Organic Compounds When Alternatives to SW-846 Methods Are Allowed by Approval of EPA Characterization and Assessment Division

Analysis	SW-846 Hethod	Sample Aliquot	SW-846 Specification	Specific Procedures Allowed by Approval of EPA-CAD
Continuous Liquid/ Liquid Extraction	3520	1 liter	The internal standards are prepared by dissolution in	 The preparation of the internal standards was changed to eliminate
or Soxhlet Extraction	3540	or 1 gram	carbon disulfide and then diluting to such volume that the final solvent is 20%	the use of carbon disulfide. The internal standards were prepared in methylene chloride only.
			carbon disulfide and 80% methylene chloride.	

a - Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101 and K102. Table 6-5.

Table 8-5 Special Procedures or Equipment Used for Analysis of Organic Compounds When Alternatives or Equivalents are Allowed in the SW-846 Methods

Analysis	SW-846 method	Sample preparation method	Alternatives or allowed in S equipment or i	W-846 for	Specific equipment or pr	ocedures used
			• Recommended GC/HS operating	conditions:	• Actual GC/MS operating condit	ions:
Gas Chromatography/ Hass Spectrometry for volatile	8240	5030	Electron energy: Mass range: Scan time:	70 ev-(nominal) 35-260 amu To give 5 scans/peak but	Electron energy: Hass range: Scan time:	70 ev 35-260 amu 2.5 sec/scan
organics Appropriate the control of			Initial column temperature: Initial column holding time: Column temperature program: Final column temperature: Final column holding time: Injector temperature: Source temperature: Transfer line temperature: Carrier gas:	3 min	Initial column temperature: Initial column holding time: Column temperature program: Final column temperature: Final column holding time: Injector temperature: Source temperature: Transfer line temperature: Carrier gas:	
χ		,	•	helium at 30 cm/sec	 Additional Information on Act Equipment: Finnegan model Data:system SUPERINCOS A Mode: Electron impact NBS library available Interface to MS - Jet sepa 	5100 GC/MS/DS system utoquan
		•	The column should be 6 ft x 0 packed with 1% SP-1000 on Carl an equivalent.	•	 The column used was an 8 ft x packed with 1% SP-1000 on Ca 	• •
					 The samples were analyzed using 	ng the purge and trap

technique.

• Samples may be analyzed by purge and trap technique

or by direct injection.

	Ana lys is	SW-846 method .	Sample preparation method	Alternatives or e allowed in SW- equipment or in	846 for	Specific equipment or pro	ocedures used
			Recommended GC/MS operating conditions:		Actual GC/MS operating conditions:		
Appendix 8-9		8270	3520-1 iquids 3520-solids	Mass range: Scan time: Initial column temperature: Initial column holding time: Column temperature program: Final column temperature hold: Injector temperature: Iransfer line temperature: Source temperature: Injector: Sample volume: Carrier gas:	benzo[g,h,i,]perylene has eluted) 250-300°C 250-300°C According to manufacturer's specification Grob-type, splitless 1-2.µl Hydrogen at 50 cm/sec or helium at 30 cm/sec	Hass range: Scan time: Initial column temperature: Initial column holding time: Column temperature program: Final column temperature hold: Injector temperature: Transfer line temperature: Source temperature: Injector: Sample volume: Carrier gas: • Additional Information on Acta Equipment: Finnegan model 5 (00 GC/MS/DS system
				 The column should be 30 m by 0. film thickness silicon-coated i column (J&W Scientific DB-5 or 	fused silica capillary	Software Package: SUPERINCOS • The column used was a 30 m x 6 RT _X -5 (5% pheny) methyl sillo	0.32 mm 1.V.

3

a - Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101 and K102. Table 6-8.

Table 8-6 Specific Procedures or Equipment Used in Preparation for Analysis of Metals
When Alternatives or Equivalents are Allowed in the SW-846 Methods

Analysis	SV-846 method	Equipment		Alternative or equivalent allowed by SW-846 methods		Specific procedures or equipment used
Inductively coupled plasma atomic emission spectroscopy	6010	Jarrell Ash 1140	•	Operate equipment following instructions provided by instrument's manufacturer.	•	Equipment operated using procedures specified in the Jarrell Ash (JA) 1140 Operator's Manual.
			•	For operation with organic solvents, auxiliary argon gas inlet is recommended.	•	Auxiliary argon gas was not required for sample matrix.
Hetals by Furnace A Thallium Selenium Lead	7841 7740 7421	(1) Perkin Elmer 3030 (2) Perkin Elmer 5000 #1 (3) Perkin Elmer 5000 #2 (4) Perkin Elmer 2580	•	Operate equipment following instructions provided by instrument's manufacturer.	•	Equipment operated using procedures specified in (1) the Perkin Elmer 3030 Instruction Manual, (2) the Perkin Elmer Model 5000 Instruction Manual, and (3) the Perkin Elmer 2580 Instruction Manual.
			•	For background correction, use either continuous correction or alternatives, e.g., Zeeman correction.	•	Background detection was used. Continuous correction on Hodels 2380 and 5000 #2 and Zeeman on Hodel 3030 and 5000 #1.
			•	If samples contain a large amount of organic material, they should be oxidized by conventional acid digestion before being analyzed.	•	Samples were prepared using acid digestion procedures from SW-846.

Table 8-6 (Continued)

Analysis	SW-846 method Equipment	Alternative or equivalent allowed by SW-846 methods	Specific procedures or equipment used
Mercury	7471 Perkin Elmer 50A	 Operate equipment following instructions provided by instrument's manufacturer. 	 Equipment operated using procedures specified in the Perkin Elmer 50A Instructions Manual.
		 Cold vapor apparatus is described in SW-846, or an equivalent apparatus may be used 	 Mercury was analyzed by cold vapor method using the apparatus as specified in SW-846 except there was no scrubber.
		 Sample may be prepared using the water bath method or the autoclave method described in SW-846. 	• Samples were prepared using the water bath method.

a - Onsite Engineering Report for John Zink Company, Tulsa, Oklahoma, for K101 and K102. Table 6-9.

Table 8-7 Matrix Spike Recoveries for Kiln Ash

	Original Amount		Sample Set		San	ple Set Duplicate		
BDAT Constituent	Found (ug/L)	Spike Added (ug/L)	Spike Result (ug/L)	Percent Recovery*	Spike Added (ug/L)	Spike Result (ug/L)	Percent Recovery*	Accuracy Factor**
<u>Semivolatile</u>				· · ·				
*** 2-Nitroaniline++			•••	41			40	2.50
*** 2-Nitrophenol+++	ND	200	43	22	200	42	21	4.76

a - From Onsite Engineering Report of John Zink Company, Tulsa, Oklahoma for K101 and K102. Table 6-16.

ND = Not detected. Value assumed to be zero in calculation for percent recovery.

*** = Not on BDAT List.

+ = For the matrix spike recoveries presented: Semivolatiles from Sample Set 3.

++ = The matrix spike recovery values presented for 2-nitroaniline are actually the average of the percent recoveries greater than 20% for all semivolatiles.

+++ = The matrix spike recovery values presented for 2-nitrophenol are actually for the isomer 4-nitrophenol.

^{*}Percent Recovery = [(Spike Result - Original Amount)/Spike Amount)] x 100.

^{**}Accuracy Correction Factor = 100/(Percent Recovery), using the lower of the two percent recovery values.

Table B-8 Matrix Spike Recoveries for Treated D004 Waste a

	Original Amount	•	Sample Set 1		Sample	Set Duplicate 1		
BDAT Constituent	Found (ug/l)	Spike Added (ug/l)	Spike Result (ug/l)	Percent _* Recovery	Spike Added (ug/l)	Spike Result (ug/l)	Percent _* Recovery	Accuracy _* , Factor
<u>Metals</u>								
155. Arsenic	782	2000	3640	143	2000	3980	160	0.70
158. Cadmium	<80	500	484	97	500	471	94	1.06
161. Lead	<5	25	21	84	25	37	148	1.19
162. Mercury	0.86	5	5.6	95	5	5.6	95	1.05

a - Obtained from Onsite Engineering Report for D004. Table 6-14.

^{* -} Percent Recovery = [(Spike Result - Original Amount)/Spike Amount)] x 100.

^{** -} Accuracy Correction Factor = 100/(Percent Recovery), using the lower of the two percent recovery values.

Table B-9 Matrix Spike Recoveries for Treated F006 Waste

	Original Amount		Actual		Accuracy
	Found	Duplicate	Spike	Percent	Correction
BDAT Constituent	(mqq)	(ppm)	(ppm)	Recovery	Factor *
155. Arsenic	0.101**	0.01	0.086	94.5	1.06
iss. Arsenie	0.01***	0.01	0.068	104.0	0.96
156. Barium	0.3737	0.3326	4.9474	91.9	1.09
	0.2765	0.222	5.1462	97.9	1.02
158. Cadmium	0.0075	0.0069	4.9010	97.9	1.02
	2.9034	0.7555	6.5448	94.3	1.06
159. Chromium	0.3494	0.4226	4.6780	85.8	1.17
	0.2213	0.2653	4.5709	86.6	1.15
160. Copper	0.2247	0.2211	4.8494	92.5	1.08
	0.1526	0.1462	4.9981	97.0	1.03
161. Lead	0.3226	0.3091	4.9619	92.9	1.08
•	0.2142	0.2287	4.6930	89.4	1.12
162. Mercury	0.001	0.001	0.0034	92.0	1.09
	0.001	0.001	0.0045	110.0	0.91
163. Nickel	0.028	0.0264	4.5400	90.3	1.11
	0.4742	0.0859	4.6093	86.6	1.15
164. Selenium****	0.101	0.12	0.175	86.0	1.16
	0.043	0.053	0.095	66.0	0.96
168. Zinc	0.0133	0.0238	5.0910	101.4	0.99
	27.202	3.65	19.818	87.8	• 1.14

a - Obtained from the Background Document for FOO6. Table 6-1.

^{* -} Accuracy Correction Factor = 100/(Percent Recovery).

^{** -} At a mix ratio of 0.5.

^{*** -} At a mix ratio of 0.2.

^{**** -} For a mix ratio of 0.2, correction factor of 1.16 was used when correcting for selenium concentrations.

TABLE C-1 DETECTION LIMITS FOR K101 BACKGROUND SCRUBBER WATER, BACKGROUND QUENCH WATER, AND FINAL QUENCH WATER.

	Background	Background	Final
	Scrubber	Quench	Quench
BDAT CONSTITUENT	Water	Water	Water
	(mg/l)	(mg/l)	(mg/l)
Volatile Organics	· · · · · · · · · · · · · · · · · · ·		
Acetone	0.010	0.010	0.010
Acetonitrile	0.100	0.100	0.100
Acrolein	0.100	0.100	0.100
Acrylonitrile	0.100	0.100	0.100
Benzene	0.005	0.005	0.005
Bromodichloromethane	0.005	0.005	0.005
Bromomethane	0.010	0.010	0.010
n-Butyl Alcohol	NA	NA	NA
Carbon Tetrachloride	0.005	0.005	0.005
Carbon Disulfide	0.005	0.005	0.005
Chlorobenzene	0.005	0.005	0.005
2-Chloro-1,3-Butadiene	0.100	0.100	0.100
Chlorodibromomethane	0.005	0.005	0.005
Chloroethane	0.010	0.010	0.010
2-Chloroethylvinylethe	r 0.010	0.010	0.010
Chloroform	0.005	0.005	0.005
Chloromethane	0.010	0.010	0.010
3-Chloropropene	0.100	0.100	0.100
1,2-Dibromo-3-Chloropt	opane 0.010	0.010	0.010
1,2-Dibromoethane	0.005	0.005	0.005
Dibromomethane	0.005	0.005	0.005
Trans-1,4-Dichloro-2-6	utene 0.100	0.100	0.100
Dichlorodifluoromethar	e 0.010	0.010	0.010
1,1-Dichloroethane	0.005	0.005	0.005
1,2-Dichloroethane	0.005	0.005	0.005
1,1-Dichloroethene	0.005	0.005	0.005
Trans-1,2-Dichloroethe	ne 0.005	0.005	0.005
1,2-Dichloropropane	0.005	0.005	0.005
Trans-1,3-Dichloroprop		0.005	0.005
cis-1,3,Dichloroproper		0.005	0.005
1,4-Dioxane	0.200	0.200	0.200
2-Ethoxyethanol	NA	NA	NA
Ethyl Acetate	NA	NA	NA
Ethyl benzene	0.005	0.005	0.005
Ethyl Cyanide	0.100	0.100	0.100
Ethyl Ether	NA	NA	NA
Ethyl Methacrylate	0.100	0.100	0.100
Ethylene Oxide	NA	NA	NA
Iodomethane	0.050	0.050	0.050
Isobutyl Alcohol	0.200	0.200	0.200
Methanol	NA	NA	NA
Methyl butyl ketone	0.010	0.010	0.010
Methyl ethyl ketone	0.010	0.010	0.010
Methyl isobutyl ketone	0.010	0.010	0.010
Methyl Methacrylate	0.100	0.100	0.100

	Scrubber	0h		
	oci dooci	Quench	Quench	
BDAT CONSTITUENT	Water	Water	Water	
	(mg/t)	(mg/l)	(mg/l)	
Volatile Organics (cont.)				
Methacrylonitrile	0.100	0.100	0.100	
Methylene Chloride	0.005	0.005	0.005	
2-Nitropropane	NA	NA	NA	
Pyridine	0.400	0.400	0.400	
Styrene	0.005	0.005	0.005	
1,1,1,2-Tetrachloroethane	0.005	0.005	0.005	
1,1,2,2-Tetrachloroethane	0.005	0.005	0.005	
Tetrachloroethene	0.005	0.005	0.005	
Toluene	0.005	0.005	0.005	
Tribromomethane(bromoform)	0.005	0.005	0.005	
1,1,1-Trichloroethane	0.005	0.005	0.005	
1,1,2-Trichloroethane	0.005	0.005	0.005	
Trichloroethene	0.005	0.005	0.005	
Trichloromonofluoromethane	0.005	0.005	0.005	
1,2,3-Trichloropropane	0.005	0.005	0.005	
1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	NA NA	
Vinyl Acetate	0.010	0.010	0.010	
Vinyl Chloride	0.010	0.010	0.010	
Xylenes '	0.005	0.005	0.005	
<u>Semivolatile Organics</u>				
Acenaphthalene	0.010	0.010	0.010	
Acenaphthene	0.010	0.010	0.010	
Acetophenone	0.020	0.020	0.020	
2-Acetylaminofluorene	0.020	0.020	0.020	
4-Aminobiphenyl	0.020	0.020	0.020	
Aniline	0.010	0.010	0.010	
Anthracene	0.010	0.910	0.010	
Aramite	NA	· NA	NA	
Benzo(a)anthracene	0.010	0.010	0.010	
Benzal Chloride	NA	NA	NA	
Benzenethiol	ND	ND	ND	
Benzidine	0.050	0.050	0.050	
Benzoic Acid	0.010	0.010	0.010	
Benzo(a)pyrene	0.010	0.010	0.010	
Benzo(b)fluoranthene	0.010	0.010	0.010	
Benzo(g,h,i) perylene	0.010	0.010	0.010	
Benzo(k)fluoranthene	0.010	0.010	0.010	
p-Benzoquinone	ND	МО	ND	
Benzyl Alcohol	0.010	0.010	0.010	
Bis(2-Chloroethoxy) methane	0.010	0.010	0.010	
Bis(2-Chloroethyl) Ether	0.010	0.010	0.010	
Bis(2-chloroisopropyl) ether	0.010	0.010	0.010	
Bis(2-ethylhexyl) phthalate	0.010	0.010	0.010	

		Background	Background	Final	
		Scrubber	Quench	Quench	
	BDAT CONSTITUENT	Water	Water	Water	
		(mg/l)	(mg/l)	(mg/l)	
	Semivolatile Organics (cont.)				
2	Butyl benzyl phthalate	0.010	0.010	0.010	
3	2-Sec-Butyl-4,6-Dinitrophenol	0.050	0.050	0.050	
74	p-Chloroaniline	0.010	0.010	0.010	
75	Chlorobenzilate	NA	NA	NA	
6	p-Chloro-m-cresol	0.010	0.010	0.010	
7	2-Chloronaphthalene	0.010	0.010	0.010	
8	2-Chlorophenol	0.010	0.010	0.010	
	4-Chlorophenyl-phenyl ether	0.010	0.010	0.010	
9	3-Chloropropionitrile	NA	NA	NA	
30	Chrysene	0.010	0.010	0.010	
31	Ortho-cresol	0.010	0.010	0.010	
32	para-cresol	0.010	0.010	0.010	
32	Cyclohexanone	ND	ND	ND	
33	Dibenz(a,h)anthracene	0.010	0.010	0.010	
	Dibenzofuran	0.010	0.010	0.010	
34	Dibenzo(a,e,) Pyrene	NA	NA	NA	
35	Dibenzo(a,i) Pyrene	NA	NA	NA	
36	1,3-Dichlorobenzene	0.010	0.010 -	0.010	
37	1,2-Dichlorobenzene	0.010	0.010	0.010	
38	1,4-Dichlorobenzene'	0.010	0.010	0.010	
39	3,3'Dichlorobenzidine	0.020	0.020	0.020	
90	2,4-Dichlorophenol	0.010	0.010	0.010	
91	2,6-Dichlorophenol	ND	ND	ND	
92	Diethyl phthalate	0.010	0.010	0.010	
93	3,3'-Dimethoxybenzidine	0.010	0.010	0.010	
94	p-Dimethylaminoazobenzene	0.020	0.020	0.020	
95	3,3'-Dimethylbenzidine	ND	ND	ND	
96	2,4-Dimethylphenol	0.010	0.010	0.010	
97	Dimethyl Phthalate	0.010	0.010	0.010	
98	Di-n-butyl phthalate	0.010	0.010	0.010	
99	1,4-Dinitrobenzene	0.050	0.050	0.050	
00	4,6-dinitro-o-cresol	0.050	0.050	0.050	
01	2,4-Dinitrophenol	0.050	0.050	0.050	
02	2,4-Dinitrotoluene	0.010	0.010	0.010	
03	2,6-Dinitrotoluene	0.010	0.010	0.010	
04	Di-n-octyl phthalate	0.010	0.010	0.010	
05	Di-n-propylnitrosoamine	0.010	0.010	0.010	
06	Diphenylamine (1)	0.020	0.020	0.020	
07	1,2,-Diphenylhydrazine	0.050	0.050	0.050	
80	Fluoranthene	0.010	0.010	0.010	
09	Fluorene	0.010	0.010	0.010	
10	Hexach Lorobenzene	0.010	0.010	0.010	
11	Hexachlorobutadiene	0.010	0.010	0.010	
12	Hexachlorocyclopentadiene	0.010	0.010	0.010	
13	Hexachloroethane	0.010	0.010	0.010	
14	Hexach Lorophene	NA	NA	NA	

TABLE C-1 (Continued)

	Background	Background	Final	
	Scrubber	Quench	Quench	
BDAT CONSTITUENT	Water	Water	Water	
	(mg/l)	(mg/l)	(mg/l)	
Semivolatile Organics (cont.)				
Hexachloropropene	ND	ND	ND	
Indeno(1,2,3,-cd) Pyrene	0.010	0.010	0.010	
Isosafrole	0.020	0.020	0.020	
Isophorone	0.010	0.010	0.010	
Methapyrilene	NA	NA	NA	
3-Methylcholanthrene	0.020	0.020	0.020	
4,4'-Methylene-bis-(2-chloroani		0.020	0.020	
Methyl Methanesulfonate	ND	ND	ND	
2-Methyl naphthalene	0.010	0.010	0.010	
Naphthalene	0.010	0.010	0.010	
1,4-Naphthoquinone	NA	NA	NA	
1-Naphthylamine	0.050	0.050	0.050	
2-Naphthylamine	0.050	0.050	0.050	
2-Nitroaniline	0.050	0.050	0.050	
3-Nitroaniline	0.050	0.050	0.050	
p-Nitroaniline	0.050	0.050	0.050	
Nitrobenzene	0.010	0.010	0.010	
2-Nitrophenol	0.010	0.010	0.010	
4-Nitrophenol	0.050	0.050	0.050	
N-Nitrosodi-n-butylamine	סא	ND	ND	
N-Nitrosodiethylamine	ND	ND	ND	
N-Nitrosodimethylamine	0.010	0.010	0.010	
N-Nitrosomethylethylamine	0.010	0.010	0.010	
N-Nitrosomorpholine	0.020	0.020	0.020	
N-Nitrosodiphenylamine (1)	0.010	0.010	0.010	
3 1-Nitrosopiperidine	0.010	0.010	0.010	
N-Nitrosopyrrolidine	0.050	0.050	0.050	
2-Methyl-5-nitroaniline	0.020	0.020	0.020	
6 Pentachlorobenzene	ND	NO	GN	
7 Pentachloroethane	NA	NA	NA	
B Pentachloronitrobenzene	0.100	0.100	0.100	
Pentachlorophenol	0.050	0.050	0.050	
) Phenacetin	0.020	0.020	0.020	
1 Phenanthrene	0.010	0.010	0.010	
2 Phenol	0.010	0.010	0.010	
3 Phthalic Anhydride	ND	ND	DM	
3 2-Picoline	0.010	0.010	0.010	
4 Pronamide	ND	ND	ND	
5 Pyrene	0.010	0.010	0.010	
6 Resorcinol	NA	NA	NA	
7 Safrole	0.050	0.050	0.050	
8 1,2,4,5-Tetrachlorobenzene	0.020	0.020	0.020	
9 2,3,4,6-Tetrachlorophenol	ND	ND	ND	
0 1,2,4-Trichlorobenzene	0.010	0.010	0.010	
1 2,4,5-Trichlorophenol	0.050	0.050	0.050	
2 2,4,6-Trichlorophenol	0.010	0.010	0.010	
2 2,4,6-irichtorophenot 3 Tris(2,3-dibromopropyt) phosph:		ND	ND	

TABLE C-1 (Continued)

		Background	Background	Final	
		Scrubber	Quench	Quench	
	BDAT CONSTITUENT	Water	Water	Water	
		(mg/t)	(mg/l)	(mg/l)	
	Metals - Total Composition				
•	Antimony	0.330	0.033	0.033	
5	Arsenic	0.280	0.028	0.028	
5	Barium	0.002	0.002	0.002	
7	Beryllium	0.001	0.001	0.001	
3	Cadmium	0.050	0.050	0.005	
)	Chromium	0.004	0.004	0.004	
1	Hexavalent Chromium	0.010	0.010	0.010	
)	Copper	0.005	0.005	0.005	
1	Lead	1.250	0.050	0.005	
2	Mercury	0.002	0.0002	0.0002	
5	Nickel	0.011	0.011	0.011	
•	Selenium	0.250	0.050	0.005	
;	Silver	0.007	0.007	0.007	
5	Thattium	0.100	0.010	0.010	
7	Vanadium	0.004	0.004	0.004	
3	Zinc	0.004	0.004	0.004	
	Metals - TCLP				
•	Antimony '				
5	Arsenic				
Ś	Barium				
7	Beryllium	NO	Г		
3	Cadmium				
•	Chromium				
}	Copper		ANALYZ	ZED .	
1	Lead				
2	Mercury				
	Nickel				
•	Selenium		•		
	Silver				
	Thallium				
7	Vanadium				
3	Zinc				
	Inorganics				
)	Cyanide	0.010	0.010	0.010	
)	Flouride	0.2	0.2	0.2	
!	Sulfide	0.5	0.5	0.5	
	Other Parameters				
	Chlorides	1	1	1	
	Sulfates	5	5	5	

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

ND - Not detected, estimated detection limit has not been determined.

TABLE C-2 DETECTION LIMITS FOR K101 SAMPLE SET #1

	Untreated	Treated		
	Waste to	Waste	Scrubber	
BOAT CONSTITUENT	Incinerator	(Slag)	Wastewater	
	(mg/kg)	(mg/kg)	(mg/l)	
Volatile Organics				
Acetone	50	0.010	0.010	
Acetonitrile	500	0.100	0.100	
Acrolein	500	0.100	0.100	
Acrylonitrile	500	0.100	0.100	
Benzene	25	0.005	0.005	
Bromodichloromethane	25	0.005	0.005	
Bromomethane	50	0.010	0.010	
n-Butyl Alcohol	NA	NA	NA	
Carbon Tetrachloride	25	0.005	0.005	
Carbon Disulfide	25	0.005	0.005	
Chlorobenzene	25	0.005	0.005	
2-Chloro-1,3-Butadiene	500	0.100	0.100	
Chlorodibromomethane	25	0.005	0.005	
Chloroethane	50	0.010	0.010	
2-Chloroethylvinylether	50	0.010	0.010	
Chloroform	25	0.005	0.005	
Chloromethane	50	0.010	0.010	
3-Chloropropene ·	500	0.100	0.100	
1,2-Dibromo-3-Chloropropane	50	0.010	0.010	
1,2-Dibromoethane	25	0.005	0.005	
Dibromomethane	25	0.005	0.005	
Trans-1,4-Dichloro-2-Butene	500	0.100	0.100	
Dichlorodifluoromethane	50	0.010	0.010	
1,1-Dichloroethane	25	0.005	0.005	
1,2-Dichloroethane	25	0.005	0.005	
1,1-Dichloroethene	25	0.005	0.005	
Trans-1,2-Dichloroethene	25	0.005	0.005	
1,2-Dichloropropane	25	0.005	0.005	
Trans-1,3-Dichloropropene	25	9.005	0.005	
cis-1,3,Dichloropropene	25	0.005	0.005	
1,4-Dioxane	1000	0.200	0.200	
2-Ethoxyethanol	NA	NA	NA	
Ethyl Acetate	NA	NA	NA	
Ethylbenzene	25	0.005	0.005	
Ethyl Cyanide	500	0.100	0.100	
Ethyl Ether	NA	NA	NA	
Ethyl-Methacrylate	500	0.100	0.100	
Ethylene Oxide	NA	NA	NA	
2 Iodomethane	250	0.050	0.050	
i Isobutyl Alcohol	1000	0.200	0.200	
Methyl butyl ketone	50	0.010	0.010	
Methyl ethyl ketone	50	0.010	0.010	
Methyl isobutyl ketone	50	0.010	0.010	
. Methyl Methacrylate	500	0.100	0.100	

		Untreated	Treated		
		Waste to	Waste	Scrubber	
	BDAT CONSTITUENT	Incinerator	(Slag)	Wastewater	
		(mg/kg)	(mg/kg)	(mg/l)	
	Volatile Organics (cont.)				
57	Methacrylonitrile	500	0.100	0.100	
8	Methylene Chloride	25	0.005	0.005	
30	2-Nitropropane	NA	NA	NA	
9	Pyridine	2000	8.400	0.400	
	Styrene	25	0.005	0.005	
0	1,1,1,2-Tetrachloroethane	25	0.005	0.005	
1	1,1,2,2-Tetrachloroethane	25	0.005	0.005	
2	Tetrachloroethene	25	0.005	0.005	
3	Toluene	25	0.005	0.005	
44	Tribromomethane(bromoform)	25	0.005	0.005	
.5	1,1,1-Trichloroethane	25	0.005	0.005	
6	1,1,2-Trichloroethane	25	0.005	0.005	
47	Trichloroethene	25	0.005	0.005	
48	Trichloromonofluoromethane	25	0.005	0.005	
49	1,2,3-Trichloropropane	25	0.005	0.005	
31	1,1,2-Trichloro-1,2,2-trifluoroethane	NA NA	NA	NA	
•	Vinyl Acetate	50	0.010	0.010	
50		50	0.010	0.010	
, ,	Xylenes 1	25	0.005	0.005	
	Semivolatile Organics				
51	Acenaphthalene	36000	0.420	0.010	
52	Acenaphthene	36000	0.420	0.010	
53	Acetophenone	72000	0.840	0.020	
54	2-Acetylaminofluorene	72000	0.840	0.020	
55	4-Aminobiphenyl	72000	0.840	0.020	
56	Aniline	36000	0.420	0.010	
57	Anthracene	36000	9.420	0.010	
58	Aramite .	NA	NA	NA	
59	Benzo(a)anthracene	36000	0.420	0.010	
18	Benzal Chloride	NA	NA	NA	
60	Benzenethiol	ND	ND	ND	
61	8enzidine	180000	2.1	0.050	
	Benzoic Acid	178000	2	0.010	
62	Benzo(a)pyrene	36000	0.420	0.010	
63	Benzo(b)fluoranthene	36000	0.420	0.010	
54	Benzo(g,h,i) perylene	36000	0.420	0.010	
55	Benzo(k)fluoranthene	36000	0.420	0.010	
56	p-Benzoquinone	ND	ND	ND	
	Benzyl Alcohol	36000	0.420	0.010	
67	Bis(2-Chloroethoxy) methane	36000	0.420	0.010	
68	Bis(2-Chloroethyl) Ether	36000	0.420	0.010	
69	Bis(2-chloroisopropyl) ether	36000	0.420	0.010	
70	Bis(2-ethylhexyl) phthalate	36000	0.420	0.010	

		Untreated	Treated		
		Waste to	Waste	Scrubber	
	BDAT CONSTITUENT	Incinerator	(Slag)	Wastewater	
		(mg/kg) ·	(mg/kg)	(mg/l)	
	Semivolatile Organics (cont.)				
72	Butyl benzyl phthalate	36000	0.420	0.010	
73	2-Sec-Butyl-4,6-Dinitrophenol	180000	2.1	0.050	
74	p-Chloroaniline	36000	0.420	0.010	
75	Chlorobenzilate	NA	NA	NA	
76	p-Chloro-m-cresol	36000	0.420	0.010	
77	2-Chloronaphthalene	36000	0.420	0.010	
78	2-Chlorophenol	36000	0.420	0.010	
	4-Chlorophenyl-phenyl ether	36000	0.420	0.010	
79	3-Chloropropionitrile	NA	NA	NA	
80	Chrysene	36000	0.420	0.010	
81	Ortho-cresol	36000	0.420	0.010	
82	para-cresol	36000	0.420	0.010	
32	Cyclohexanone	ND	ND	ND	
83	Dibenz(a,h)anthracene	36000	0.420	0.010	
	Dibenzofuran	36000	0.420	0.010	
84	Dibenzo(a,e,) Pyrene	NA	NA	NA	
85	Dibenzo(a,i) Pyrene	NA	NA	NA	
86	1,3-Dichlorobenzene	36000	0.420	0.010	
87	1,2-Dichlorobenzene '	36000	0.420	0.010	
88	1,4-Dichlorobenzene	36000	0.420	0.010	
89	3,3'Dichlorobenzidine	72000	0.840	0.020	
90	2,4-Dichlorophenol	36000	0.420	0.010	
91	2,6-Dichlorophenol	ND	DIA	ND	
92	Diethyl phthalate	36000	0.420	0.010	
93	3,3'-Dimethoxybenzidine	36000	0.420	0.010	
94	p-Dimethylaminoazobenzene	72000	0.840	0.020	
95	3,3'-Dimethylbenzidine	ND	ND	ND	
96	2,4-Dimethylphenol	36000	0.420	0.010	
97	Dimethyl Phthalate	` 36000	0.420	0.010	
98	Di-n-butyl phthalate	36000	0.420	0.010	
99	1,4-Dinitrobenzene	180000	2.1	0.050	
00	4,6-dinitro-o-cresol	178000	2	0.050	
01	2,4-Dinitrophenol	178000	2	0.050	
02	2,4-Dinitrotoluene	36000	0.420	0.010	
03	2,6-Dinitrotoluene	36000	0.420	0.010	
04	Di-n-octyl phthalate	36000	0.420	0.010	
05	Di-n-propylnitrosoamine	36000	0.420	0.010	
06	Diphenylamine (1)	72000	0.840	0.020	
07	1,2,-Diphenylhydrazine	180000	2.1	0.050	
80	Fluoranthene	36000	0.420	0.010	
09	Fluorene	36000	0.420	0.010	
10	Hexachlorobenzene	36000	0.420	0.010	
11	Hexachlorobutadiene	36000	0.420	0.010	
	Universal annound annotations	36000	0.420	0.010	
12 13	Hexachlorocyclopentadiene Hexachloroethane	36000	0.420	0.010	

		Untreated	Treated	
		Waste to	Waste	Scrubber
BOA	T CONSTITUENT	Incinerator	(Slag)	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
Sem	nivolatile Organics (cont.)			
i Hex	kachloropropene	ND	ND	ND
5 Ind	deno(1,2,3,-cd) Pyrene	36000	0.420	0.010
7 Iso	osafrole	72000	0.840	0.020
Isc	ophorone	36000	0.420	0.010
3 Met	thapyrilene	NA	NA	NA
9 3-M	Methylcholanthrene	72000	0.840	0.020
4,4	4'-Methylene-bis-(2-chloroaniline)	72000	0.840	0.020
5 Met	thyl Methanesulfonate	ND	NO	ND
2-M	Methyl naphthalene	36000	0.420	0.010
	phthalene	36000	0.420	0.010
2 1,4	4-Naphthoquinone	NA	NA	NA
	Naphthylamine	180000	2.1	0.050
	Naphthylamine	180000	2.1	0.050
	Nitroaniline	178000	2	0.050
3-1	Nitroaniline	178000	2	0.050
5 p-1	Nitroaniline	178000	2	0.050
6 Ni1	trobenzene	36000	0.420	0.010
2-1	Nitrophenol	36000	0.420	0.010
	Nitrophenol 1	178000	2	0.050
8 N-1	Nitrosodi-n-butylamine	MD	ND	ND
9 N-1	Nitrosodiethylamine	ND	ND	ND
	Nitrosodimethylamine	36000	0.420	0.010
	Nitrosomethylethylamine	36000	0.420	0.010
	Nitrosomorpholine	36000	0.420	0.020
	Nitrosodiphenylamine (1)	72000	0.840	0.010
	Nitrosopiperidine	36000	0.420	0.010
	Nitrosopyrrolidine	180000	2.1	0.050
	Methyl-5-nitroaniline	72000	0.840	0.020
	ntachlorobenzene	ND	мр	ND
	ntachloroethane	NA	NA NA	NA
	ntachloroni trobenzene	360000	4.2	0.100
	ntachlorophenol	178000	2	0.050
	enacetin	72000	0.840	0.020
	enanthrene	36000	0.420	0.010
	enol	36000	0.420	0.010
	thalic Anhydride	ND	ND	ND
	Picoline	36000	0.420	0.010
4 Pr	onamide	ND	NO	ND
5 Py	rene	36000	0.420	0.010
•	esorcinol	NA	NA	NA
	ifrole	180000	2.1	0.050
	2,4,5-Tetrachlorobenzene	72000	0.840	0.020
	3,4,6-Tetrachlorophenol	ND	ND	ND
-	2,4-Trichlorobenzene	36000	0.420	0.010
•	4,5-Trichlorophenol	178000	2	0.050
	4,6-Trichlorophenol	36000	0.420	0.010
•	is(2,3-dibromopropyl) phosphate	ND	ND	ND

TABLE C-2 (Continued)

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BOAT CONSTITUENT	Incinerator	(Slag)	Wastewater
	•	(mg/kg)	(mg/kg)	(mg/l)
	Metals - Total Composition		•	
4	Antimony	3.3	3.3	0.330
5	Arsenic	2.8	100	0.280
6	Barium	0.2	0.2	0.002
7	Beryllium	0.1	0.1	0.001
3	Cacimium	5.0	0.5	0.050
•	Chromium	0.4	0.4	0.004
1	Hexavalent Chromium	0.01	0.01	0.010
)	Copper	0.5	0.5	0.005
t	Lead	0.5	0.5	0.750
2	Mercury	0.02	0.02	0.0008
3	Nickel	1.1	1.1	0.011
4	Selenium	0.5	0.5	0.050
5	Silver	0.7	0.7	0.007
5	Thallium	5.0	1.0	0.100
7	Vanadium	0.4	0.4	0.004
3	Zinc	0.4	0.4	0.004
	Metals - TCLP (mg/l)			
'	Antimony		0.033	
5	Arsenic		0.200	
5	Barium '		0.002	
7	Beryllium	NOT	0.001	NOT
3	Cacimium		0.005	
•	Chromium		0.004	
)	Copper	ANALYZED	0.005	ANALYZED
İ	Lead		0.005	
	Mercury		0.0002	
	Nickel		0.011	
	Selenium		Q.005	
	Silver		0.007	
	Thallium		0.010	
	Vanadium		0.004	
3	Zinc		0.004	
	Inorganics			
)	Cyanide	0.010	0.010	0.010
)	Flouride	0.2	0.2	0.2
1	Sulfide	0.5	0.5	0.5
	Other Parameters			
	Chlorides	1	1	1

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

ND - Not detected, estimated detection limit has not been determined.

TABLE C-3 DETECTION LIMITS FOR K101 SAMPLE SET #2

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	Incinerator	(Slag)	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
	Volatile Organics			
2	Acetone	50	0.010	0.010
1	Acetonitrile	500	0.100	0.100
2	Acrolein	500	0.100	0.100
3	Acrylonitrile	500	0.100	0.100
4	Benzene	25	0.005	0.005
5	Bromodichloromethane	25	0.005	0.005
6	Bromomethane	50	0.010	0.010
3	n-Butyl Alcohol	NA	NA	NA
7	Carbon Tetrachloride	25	0.005	0.005
8	Carbon Disulfide	25	0.005	0.005
9	Chlorobenzene	25	0.005	0.005
0	2-Chloro-1,3-Butadiene	500	0.100	0.100
1	Chlorodibromomethane	25	0.005	0.005
2	Chloroethane	50	0.010	0.010
3	2-Chloroethylvinylether	50	0.010	0.010
4	Chloroform	25	0.005	0.005
5	Chloromethane	50	0.010	0.010
6	3-Chloropropene	500	0.100	0.100
7	1,2-Dibromo-3-Chloropropane	50	0.010	0.010
8	1,2-Dibromoethane '	25	0.005	0.005
9	Dibromomethane	25	0.005	0.005
0	Trans-1,4-Dichloro-2-Butene	500	0.100	0.100
1	Dichlorodifluoromethane	50	0.010	0.010
2	1,1-Dichloroethane	25	0.005	0.005
3	1,2-Dichloroethane	25	0.005	0.005
4	1,1-Dichloroethene	25	0.005	0.005
	Trans-1,2-Dichloroethene	25	0.005	0.005
6	1,2-Dichloropropane	25	0.005	0.005
7	Trans-1,3-Dichloropropene	25	9.005	0.005
8	cis-1,3,Dichloropropene	25	0.005	0.005
9	1,4-Dioxane	1000	0.200	0.200
4	2-Ethoxyethanol	NA NA	NA NA	NA NA
5	Ethyl Acetate	NA 25	NA 0.005	NA 0.005
6	Ethylbenzene	500	0.100	0.100
	Ethyl Cyanide		NA	
.7 :1	Ethyl Ether Ethyl Methacrylate	NA 500	0.100	NA 0.100
4		NA	NA	0.100 NA
2	Ethylene Oxide Iodomethane	NA 250	0.050	0.050
3	Isobutyl Alcohol	1000	0.200	0.200
8			NA	0.200 NA
د.	Methyl butyl ketone	NA 50	0.010	0.010
1.	Methyl butyl ketone	50	0.010	0.010
4	Methyl isobutyl ketone			
7	Methyl isobutyl ketone Methyl Methacrylate	50 500	0.010 0.100	0.010 0.100

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	Incinerator	(Stag)	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
	Volatile Organics (cont.)			
7	Methacrylonitrile	500	0.100	0.100
8	Methylene Chloride	25	0.005	0.005
0	2-Nitropropane	NA	NA	NA
9	Pyridine	2000	0.400	0.400
	Styrene	25	0.005	0.005
0	1,1,1,2-Tetrachloroethane	25	0.005	0.005
1	1,1,2,2-Tetrachloroethane	25	0.005	0.005
2	Tetrachloroethene	25	0.005	0.005
3	Toluene	25	0.005	0.005
4	Tribromomethane(bromoform)	25	0.005	0.005
5	1,1,1-Trichloroethane	25	0.005	0.005
6	1,1,2-Trichloroethane	25	0.005	0.005
7	Trichloroethene	25	0.005	0.005
8	Trichloromonofluoromethane	25	0.005	0.005
9	1,2,3-Trichloropropane	25	0.005	0.005
1	1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	NA
	Vinyl Acetate	50	0.010	0.010
0	Vinyl Chloride	50	0.010	0.010
	Xylenes	25	0.005	0.005
	Semivolatile Organics			
1	Acenaphthalene	38000	0.420	0.010
2	Acenaphthene	38000	0.420	0.010
3	Acetophenone	76000	0.840	0.020
4	2-Acetylaminofluorene	76000	0.840	0.020
5	4-Aminobiphenyl	7600 0	0.840	0.020
6	Aniline	38000	0.420	0.010
7	Anthracene	38000	8.420	0.010
8	Aramite	NA	NA	NA
9	Benzo(a)anthracene	38000	0.420	0.010
8	Benzal Chloride	NA	NA	NA
0	Benzenethiol	ND	ND	ND
1	Benzidine	190000	2.1	0.050
	Benzoic Acid	188000	2	0.010
2	Benzo(a)pyrene	38000	0.420	0.010
3	Benzo(b)fluoranthene	38000	0.420	0.010
4	Benzo(g,h,i) perylene	38000	0.420	0.010
5	Benzo(k)fluoranthene	38000	0.420	0.010
6	p-Benzoquinone	ND	ND	ND
	Benzyl Alcohol	38000	0.420	0.010
7	Bis(2-Chloroethoxy) methane	38000	0.420	0.010
8	Bis(2-Chloroethyl) Ether	38000	0.420	0.010
9	Bis(2-chloroisopropyl) ether	38000	0.420	0.010
0	Bis(2-ethylhexyl) phthalate	38000	0.420	0.010
	4-Bromophenyl phenyl ether	38000	0.420	

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	Incinerator	(Slag)	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
	Semivolatile Organics (cont.)			
	Butyl benzyl phthalate	38000	0.420	0.010
	2-Sec-Butyl-4,6-Dinitrophenol	190000	2.1	0.050
	p-Chloroaniline	38000	0.420	0.010
	Chlorobenzilate	NA	NA	NA
,	p-Chloro-m-cresol	38000	0.420	0.010
•	2-Chloronaphthalene	38000	0.420	0.010
3	2-Chlorophenol	38000	0.420	0.010
	4-Chlorophenyl-phenyl ether	38000	0.420	0.010
)	3-Chloropropionitrile	NA	NA	NA
}	Chrysene	38000	0.420	0.010
	Ortho-cresol	38000	0.420	0.010
2	para-cresol	38000	0.420	0.010
?	Cyclohexanone	ND	ND	ND
,	Dibenz(a,h)anthracene	38000	0.420	0.010
	Dibenzofuran	38000	0.420	0.010
	Dibenzo(a,e,) Pyrene	NA	NA	NA
;	Dibenzo(a,i) Pyrene	NA	NA	NA
5	1,3-Dichlorobenzene 1	38000	0.420	0.010
7	1,2-Dichlorobenzene	38000	0.420	0.010
3	1,4-Dichlorobenzene	38000	0.420	0.010
,	3,3/Dichlorobenzidine	76000	0.840	0.020
)	2,4-Dichlorophenol	38000	0.420	0.010
1	2,6-Dichlorophenol	ND	ND	ND
2	Diethyl phthalate	38000	0.420	0.010
5	3,3'-Dimethoxybenzidine	38000	0.420	0.010
	p-Dimethylaminoazobenzene	76000	0.840	0.020
;	3,3'-Dimethylbenzidine	ND	ND	ND
Ś	2,4-Dimethylphenol	38000	0.420	0.010
7	Dimethyl Phthalate	38000	0.420	0.010
3	Di-n-butyl phthalate	38000	0.420	0.010
,	1,4-Dinitrobenzene	190000	2.1	0.050
)	4,6-dinitro-o-cresol	188000	2	0.050
1	2,4-Dinitrophenol	188000	2	0.050
	2,4-Dinitrotoluene	38000	0.420	0.010
5	2,6-Dinitrotoluene	38000	0.420	0.010
	Di-n-octyl phthalate	38000	0.420	0.010
;	Di-n-propylnitrosoamine	38000	0.420	0.010
5	Diphenylamine (1)	76000	0.840	0.020
7	1,2,-Diphenylhydrazine	190000	2.1	0.050
3	Fluoranthene	38000	0.420	0.010
,	Fluorene	38000	0.420	0.010
)	Hexachlorobenzene	38000	0.420	0.010
, 	Hexachlorobutadiene	38000	0.420	0.010
2	Hexachlorocyclopentadiene	38000	0.420	0.010
5	Hexachloroethane	38000	0.420	0.010
,	HOVORITOL OF MOULE	20000	0.720	3.010

		Untreated	Treated	
		Waste to	Waste	Scrubber
BDA	AT CONSTITUENT	Incinerator (mg/kg)	(\$lag) (mg/kg)	Wastewater (mg/l)
		/11/07/03/	(3) (.3)	
Sen	mivolatile Organics (cont.)			
Hex	kach Loropropene	NO	ND	NO
Inc	deno(1,2,3,-cd) Pyrene	38000	0.420	0.010
Isc	osafrole	76000	0.840	0.020
Isc	ophorone	38000	0.420	0.010
Met	thapyrilene	NA	NA	NA
3-1	Methylcholanthrene	76000	0.840	0.020
4,4	4'-Methylene-bis-(2-chloroaniline)	76000	0.840	0.020
Met	thyl Methanesulfonate	NO	ND	ND
2-1	Methyl naphthalene	36000	0.420	0.010
Naç	phthalene	36000	0.420	0.010
2 1,4	4-Naphthoquinone	NA	NA	NA
5 1-3	Naphthylamine	180000	2.1	0.050
	Naphthylamine	180000	2.1	0.050
	Nitroaniline	178000	2	0.050
3-1	Nitroaniline	178000	2	0.050
5 p-1	Nitroaniline	178000	2	0.050
•	trobenzene	38000	0.420	0.010
2-1	Nitrophenol ,	38000	0.420	0.010
7 4-1	Nitrophenol	188000	2.	0.050
3 N-1	Nitrosodi-n-butylamine	ND	ND	ND .
	Mitrosodiethylamine	ND	ND	ND
	Nitrosodimethylamine	38000	0.420	0.010
	Nitrosomethylethylamine	38000	0.420	0.010
	Mitrosomorpholine	38000	0.420	0.020
	Nitrosodiphenylamine (1)	76000	0.840	0.010
	Nitrosopiperidine	38000	0.420	0.010
	Nitrosopyrrolidine	190000	2.1	0.050
	Methyl-5-nitroaniline	76000	0.840	0.020
	entachlorobenzene	NO	NQ	ND
7 Pe	entachloroethane	NA	NA	NA
8 Pe	entachloronitrobenzene	380000 •	4.2	0.100
	entachlorophenol	188000	2	0.050
	nenacetin	76000	0.840	0.020
	nenanthrene	38000	0.420	0.010
	nenol	38000	0.420	0.010
	ithalic Anhydride	ND	ND	DI
	Picoline	38000	0.420	0.010
	ronamide	ND	ND	ND
	/rene	38000	0.420	0.010
-	esorcinol	NA	NA	HA
	afrole	190000	2.1	0.050
	,2,4,5-Tetrachlorobenzene	76000	0.840	0.020
	,3,4,6-Tetrachtorophenol	ND	ND	ND
	,2,4-Trichlorobenzene	38000	0.420	0.010
•	,4,5-Trichtorophenol	188000	2	0.050
•	,4,6-Trichtorophenol	38000	0.420	0.010
	ris(2,3-dibromopropyl) phosphate	DOOG	ND	ND

TABLE C-3 (Continued)

,	Untreated	Treated	
	Waste to	Waste	Scrubber
BDAT CONSTITUENT	Incinerator	(Slag)	Wastewater
	(mg/kg)	(mg/kg)	(mg/l)
Metals - Total Composition			
Antimony	3.3	3.3	0.330
Arsenic	2.8	100	0.280
Barium	0.2	0.2	0.002
Beryllium	0.1	0.1	0.001
Cadmium	5.0	0.5	0.500
Chromium	0.4	0.4	0.004
Hexavalent Chromium	0.01	0.01	0.010
Copper	0.5	0.5	0.005
Lead	2.0	0.5	0.750
Mercury	0.02	0.1	0.004
Nickel	1.1	1.1	0.011
Selenium	5.0	0.5	0.025
Silver	0.7	0.7	0.007
Thallium	5.0	1.0	0.020
Vanadium	0.4	0.4	0.004
Zinc	0.4	0.4	0.004
Metals - TCLP (mg/l)			
Antimony		ی 0.033	
Arsenic		0.200	
Barium '		0.002	
Beryllium .	NOT	0.001	NOT
Cadmium		0.005	
Chromium		0.004	
Copper	ANALYZED	0.005	ANALYZED
Lead		0.005	
Mercury		0.0002	
Nickel		0.011	
Selenium		Q. 010	
Silver		0.007	
Thallium		0.010	
Vanadium		0.004	
Zinc		0.004	
Inorganics			
Cyanide	0.010	0.010	0.010
Flouride	0.2	0.2	0.2
Sulfide	0.5	0.5	0.5
Other Parameters			
Chlorides	1	1	1 5
	5	5	

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

ND - Not detected, estimated detection limit has not been determined.

TABLE C-4 DETECTION LIMITS FOR K101 SAMPLE SET #3

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	Incinerator	(Slag)	Wastewater
		, (mg/kg)	(mg/kg)	(mg/l)
	Volatile Organics			
	Acetone	50	0.010	0.010
	Acetonitrile	500	0.100	0.100
	Acrolein	500	0.100	0.100
	Acrylonitrile	500	0.100	0.100
	Benzene	25	0.005	0.005
	Bromodichloromethane	25	0.005	0.005
	Bromomethane	50	0.010	0.010
	n-butyl Alcohol	NA	NA	NA
•	Carbon Tetrachloride	25	0.005	0.005
	Carbon Disulfide	25	0.005	0.005
	Chlorobenzene	25	0.005	0.005
	2-Chloro-1,3-Butadiene	500	0.100	0.100
	Chlorodibromomethane	25	0.005	0.005
	Chloroethane	50	0.010	0.010
	2-Chloroethylvinylether	50	0.010	0.010
	Chloroform	25	0.005	0.005
	Chloromethane	50	0.010	0.010
,	3-Chloropropene	500	0.100	0.100
,	1,2-Dibromo-3-Chloropropane	50	0.010	0.010
;	1,2-Dibromoethane	25	0.005	0.005
)	Dibromomethane	25	0.005	0.005
	Trans-1,4-Dichloro-2-Butene	500	0.100	0.100
	Dichlorodifluoromethane	50	0.010	0.010
	1,1-Dichloroethane	25	0.005	0.005
	1,2-Dichloroethane	25	0.005	0.005
	1,1-Dichloroethene	25	0.005	0.005
	Trans-1,2-Dichloroethene	25	0.005	0.005
,	1,2-Dichloropropane	25	0.005	0.005
,	Trans-1,3-Dichloropropene	25	0.005	0.005
;	cis-1,3,Dichloropropene	25	0.005	0.005
,	1,4-Dioxane	1000	0.200	0.200
	2-Ethoxyethanol	NA	NA	NA
	Ethyl Acetate	NA	NA	NA
,	Ethylbenzene	25	0.005	0.005
)	Ethyl Cyanide	500	0.100	0.100
p	Ethyl Acetate	NA	NA	NA
	Ethyl Methacrylate	500	0.100	0.100
	Ethylene Oxide	NA	NA	NA
	Iodomethane	250	0.050	0.050
	Isobutyl Alcohol	1000	0.200	0.200
1	Methanol	NA	NA NA	NA
	Methyl butyl ketone	50	0.010	0.010
	Methyl ethyl ketone	50	0.010	0.010
)	Methyl isobutyl ketone	50	0.010	0.010
	Methyl Methacrylate	500	0.100	0.100

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	Incinerator	(Slag)	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
	Volatile Organics (cont.)			•
7	Methacrylonitrile	500	0.100	0.100
}	Methylene Chloride	25	0.005	0.005
)	2-Nitropropane	NA	NA	NA
)	Pyridine	2000	0.400	0.400
	Styrene	25	0.005	0.005
)	1,1,1,2-Tetrachloroethane	25	0.005	0.005
1	1,1,2,2-Tetrachloroethane	25	0.005	0.005
2	Tetrachloroethene	25	0.005	0.005
3	Toluene	25	0.005	0.005
4	Tribromomethane(bromoform)	25	0.005	0.005
5	1,1,1-Trichloroethane	25	0.005	0.005
6	1,1,2-Trichloroethane	25	0.005	0.005
7	Trichloroethene	25	0.005	0.005
8	Trichloromonofluoromethane	25	0.005	0.005
9	1,2,3-Trichloropropane	25	0.005	0.005
1	1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	NA
	Vinyl Acetate	50	0.010	0.010
0	Vinyl Chloride ,	50	0.010	0.010
	Xylenes	25	0.005	0.005
	Semivolatile Organics			
1	Acenaphthalene	34000	0.420	0.010
2	Acenaphthene	34000	0.420	0.010
3	Acetophenone	68000	0.840	0.020
4	2-Acetylaminofluorene	68000	0.840	0.020
5	4-Aminobiphenyl	68000	0.840	0.020
6	Aniline	34000	0.420	0.010
7	Anthracene	34000	9.420	0.010
8	Aramite	NA	NA	NA
9	Benzo(a)anthracene	34000	0.420	0.010
8	Benzal Chloride	NA	NA	NA
0	Benzenethiol	ND	ND	ND
1	Benzidine	170000	2.1	0.050
	Benzoic Acid	172000	2	0.010
2	Benzo(a)pyrene	34000	0.420	0.010
3	Benzo(b)fluoranthene	34000	0.420	0.010
4	Benzo(g,h,i) perylene	34000	0.420	0.010
5	Benzo(k)fluoranthene	34000	0.420	0.010
6	p-Benzoquinone	ND	ND	ND
	Benzył Alcohol	34000	0.420	0.010
7	Bis(2-Chloroethoxy) methane	34000	0.420	0.010
8	Bis(2-Chloroethyl) Ether	34000	0.420	0.010
7	Bis(2-chloroisopropyl) ether	34000	0.420	0.010
0	Bis(2-ethylhexyl) phthalate	34000	0.420	0.010
	4-Bromophenyl phenyl ether	34000	0.420	0.010

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	Incinerator	(Slag)	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
	Semivolatile Organics (cont.)			
?	Butyl benzyl phthalate	34000	0.420	0.010
5	2-Sec-Butyl-4,6-Dinitrophenol	170000	2.1	0.050
•	p-Chloroaniline	34000	0.420	0.010
;	Chlorobenzilate	NA	NA	NA
•	p-Chloro-m-cresol	34000	0.420	0.010
•	2-Chloronaphthalene	34000	0.420	0.010
3	2-Chlorophenol	34000	0.420	0.010
	4-Chlorophenyl-phenyl ether	34000	0.420	0.010
)	3-Chloropropionitrile	NA	NA	NA
)	Chrysene	. 34000	0.420	0.010
	Ortho-cresol	34000	0.420	0.010
2	para-cresol	34000	0.420	0.010
2	Cyclohexanone	ND	ND	ND
5	Dibenz(a,h)anthracene	34000	0.420	0.010
	Dibenzofuran	34000	0.420	0.010
,	Dibenzo(a,e,) Pyrene	NA	NA	NA.
,	Dibenzo(a,i) Pyrene	NA	NA	NA.
,	1,3-Dichlorobenzene	34000	0.420	0.010
,	1,2-Dichlorobenzene	34000	0.420	0.010
}	1,4-Dichlorobenzene	34000	0.420	0.010
,	3,3'Dichlorobenzidine	68000	0.840	0.020
)	2,4-Dichlorophenol	34000	0.420	0.010
	2,6-Dichlorophenol	ND	ND	ND
?	Diethyl phthalate	34000	0.420	0.010
,	3,3'-Dimethoxybenzidine	34000	0.420	0.010
	p-Dimethylaminoazobenzene	68000	0.840	0.020
;	3,3'-Dimethylbenzidine	ND	ND	ND
•	2,4-Dimethylphenol	34000	0.420	0.010
,	Dimethyl Phthalate	34000	0.420	0.010
3	Di-n-butyl phthalate	34000	0.420	0.010
)	1,4-Dinitrobenzene	170000	2.1	0.050
)	4,6-dinitro-o-cresol	172000	2	0.050
	2,4-Dinitrophenol	172000	2	0.050
	2,4-Dinitrotoluene	34000	0.420	0.010
	2,6-Dinitrotoluene	34000	0.420	0.010
	Di-n-octyl phthalate	34000	0.420	0.010
;	Di-n-propylnitrosoamine	34000	0.420	0.010
,	Diphenylamine (1)	68000	0.840	
,	1,2,-Diphenylhydrazine	170000	2.1	0.020
3	fluoranthene	34000		0.050
			0.420	0.010
) 1	Fluorene	34000	0.420	0.010
)	Hexach Lorobenzene	34000	0.420	0.010
,	Hexachlorobutadiene	34000	0.420	0.010
?	Hexachlorocyclopentadiene	34000	0.420	0.010
	Hexachloroethane	34000	0.420	0.010

		Untreated	Treated	
		Waste to	Waste	Scrubber
BDA	T CONSTITUENT	1 ncine rator	(Slag)	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
<u>Sem</u>	ivolatile Organics (cont.)			
Hex	achloropropene	ND	ND	ND
Ind	eno(1,2,3,-cd) Pyrene	34000	0.420	0.010
Iso	safrole	68000	0.840	0.020
Iso	phorone	34000	0.420	0.010
Meti	hapyrilene	NA	NA	NA
3-M	ethylcholanthrene	68000	0.840	0.020
4,4	'-Methylene-bis-(2-chloroaniline)	68000	0.840	0.020
Met	hyl Methanesulfonate	ND	ND	DN
2-M	ethyl naphthalene	34000	0.420	0.010
Nap	hthalene	34000	0.420	0.010
1,4	-Naphthoquinone	NA	NA	NA
1-N	aphthylamine	170000	2.1	0.050
2-N	aphthylamine	170000	2.1	0.050
2-N	itroaniline	172000	2	0.050
3-N	itroaniline	172000	2	0.050
p-N	itroaniline	172000	2	0.050
Nit	robenzene	34000	0.420	0.010
, 2-N	itrophenal '	34000	0.420	0.010
ั 4-ม	itrophenol .	172000	2	0.050
N-N	itrosodi-n-butylamine	ND	ND	ND
N-N	itrosodiethylamine	ND	ND	ND
N-N	itrosodimethylamine	34000	0.420	0.010
N-N	itrosomethylethylamine	34000	0.420	0.010
N-N	itrosomorpholine	34000	0.420	0.020
N-N	itrosodiphenylamine (1)	68000	0.840	0.010
1-N	itrosopiperidine	34000	0.420	0.010
N-N	itrosopyrrolidine	170000	2.1	0.050
2-M	ethyl-5-nitroaniline	68000	0.840	0.020
Pen	tachlorobenzene	NO	й	ND
Pen	tachloroethane	NA	NA	NA
Pen	tachloronitrobenzene	340000	4.2	0.100
Pen	tachlorophenol	172000	2	0.050
Phe	nacetin	68000	0.840	0.020
Pher	nanthrene	34000	0.420	0.010
Pher	nol	34000	0.420	0.010
Phti	halic Anhydride	ND	ND	ND
2-P	icoli ne	34000	0.420	0.010
Prod	namide	ND	ND.	ND
Руг	ene	34000	0.420	0.010
Res	orcinal	NA	NA	NA
Safi	role	170000	2.1	0.050
1,2	,4,5-Tetrachlorobenzene	68000	0.840	0.020
	,4,6-Tetrachlorophenol	ND	ND	ND
	,4-Trichlorobenzene	34000	0.420	0.010
• •	,5-Trichlorophenol	172000	2	0.050
	,6-Trichlorophenol	34000	0.420	0.010
	s(2,3-dibromopropyl) phosphate	ND	.0.420 OM	OLOTO

TABLE C-4 (Continued)

	Untreated	Treated	
	Waste to	Waste	Scrubber
BDAT CONSTITUENT	ONSTITUENT Incinerator (Slag	(Slag)	Wastewater
	(mg/kg)	(mg/kg)	(mg/l)
Metals - Total Composition			
Antimony	3.3	3.3	0.330
Arsenic	2.8	100	0.280
Barium	0.2	0.2	0.002
' Beryllium	0.1	0.1	0.001
Cadmium	5.0	0.5	0.500
Chromium	0.4	0.4	0.004
Hexavelent Chromium	0.01	0.01	0.010
Copper	0.5	0.5	0.005
Lead	0.5	0.5	0.500
2 Mercury	0.02	0.1	0.004
Nickel	1.1	1.1	0.011
Selenium	0.5	0.5	0.050
5 Silver	0.7	0.7	0.070
5 Thallium	5.0	1.0	0.010
7 Vanadium	0.4	0.4	0.004
3 Zinc	0.4	0.4	0.004
Metals - TCLP (mg/l)			
Antimony		0.033	
5 Arsenic		0.100	
S Barium		0.002	
7 Beryllium	NOT	0.001	NOT
8 Cadmium		0.005	
9 Chromium		0.004	
O Copper	ANALYZED	0.005	ANALYZED
1 Lead		0.005	
2 Mercury		0.0002	
3 Nickel		0.011	
4 Selenium		0.025	
5 Silver		0.070	
6 Thallium		0.010	
7 Vanadium		0.004	
8 Zinc		0.004	
Inorganics			
9 Cyanide	0.010	0.010	0.010
O Flouride	0.2	0.2	0.2
1 Sulfide	0.5	0.5	0.5
Other Parameters			
Chlorides	1	1	1
Sulfates	5	5	5

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

ND - Not detected, estimated detection limit has not been determined.

	Untreated	
	Waste to	Scrubber
BDAT CONSTITUENT	TUENT Incinerator	
	(mg/kg)	(mg/l)
Volatile Organics		
2 Acetone	50	0.010
1 Acetonitrile	500	0.100
2 Acrolein	500	0.100
3 Acrylonitrile	500	0.100
4 Benzene	25	0.005
5 Bromodichloromethane	25	0.005
6 Bromomethane	50	0.010
3 n-Butyl Alcohol	NA	NA
7 Carbon Tetrachloride	25	0.005
8 Carbon Disulfide	. 25	0.005
9 Chlorobenzene	25	0.005
0 2-Chloro-1,3-Butadiene	500	0.100
1 Chlorodibromomethane	25	0.005
2 Chloroethane	50	0.010
3 2-Chloroethylvinylether	50	. 0.010
4 Chloroform	25	0.005
5 Chloromethane	50	0.010
6 3-Chloropropene ,	500	0.100
7 1,2-Dibromo-3-Chloropropane	50	0.010
8 1,2-Dibromoethane	25	0.005
9 Dibromomethane	25	0.005
O Trans-1,4-Dichloro-2-Butene	500	0.100
1 Dichlorodifluoromethane	50	0.010
2 1,1-Dichloroethane	25	0.005
3 1,2-Dichloroethane	25	0.005
4 1,1-Dichloroethene	25	0.005
5 Trans-1,2-Dichloroethene	25	0.005
6 1,2-Dichloropropane	25	0.005
7 Trans-1,3-Dichloropropene	25	0.005
8 cis-1,3,Dichloropropene	25	0.005
9 1,4-Dioxane	1000	0.200
4 2-Ethoxyethanol	NA	NA
5 Ethyl Acetate	NA -	NA
6 Ethylbenzene	25	0.005
0 Ethyl Cyanide	500	0.100
7 Ethyl Ether	NA To o	NA .
1 Ethyl Methacrylate	500	0.100
4 Ethylene Oxide	NA OTO	NA
2 Iodomethane	250	0.050
3 Isobutyl Alcohol	1000	0.200
8 Methanol	NA CO	NA
Methyl butyl ketone	50	0.010
4 Methyl ethyl ketone	50	0.010
9 Methyl isobutyl ketone	50	0.010
5 Methyl Methacrylate	500	0.100

		Untreated	
		Waste to	Scrubber
	BDAT CONSTITUENT	Incinerator	Wastewater
		(mg/kg)	(mg/l)
	Volatile Organics (cont.)		
37	Methacrylonitrile	500	0.100
38	Methylene Chloride	25	0.005
30	2-Nitropropane	NA	NA
39	Pyridine	2000	0.400
	Styrene	25	0.005
40	1,1,1,2-Tetrachloroethane	25	0.005
1	1,1,2,2-Tetrachloroethane	25	0.005
42	Tetrachloroethene	25	0.005
43	Toluene	25	0.005
44	Tribromomethane(bromoform)	25	0.005
45	1,1,1-Trichloroethane	25	0.005
46	1,1,2-Trichloroethane	25	0.005
47	Trichloroethene	25	0.005
8	Trichloromonofluoromethane	25	0.005
49	1,2,3-Trichloropropane	25	0.005
31	1,1,2-Trichloro-1,2,2-trifluoroethane	NA .	NA NA
	Vinyl Acetate	50	0.010
50	Vinyl Chloride	50	0.010
_	Xylenes	25	0.005
	Semivolatile Organics		
51	Acenaphthalene	38000	0.010
52	Acenaphthene	38000	0.010
53	Acetophenone	76000	0.020
54	2-Acetylaminofluorene	76000	0.020
55	4-Aminobiphenyl	76000	0.020
56	Aniline	38000	0.010
57	Anthracene	38000	0.010
58	Aramite	NA	NA
59	Benzo(a)anthracene	38000	0.010
18	Benzal Chloride	NA	NA
60	Benzenethiol	ИĎ	ND
61	Benzidine	190000	0.050
	Benzoic Acid	190000	0.010
62	Benzo(a)pyrene	38000	0.010
63	Benzo(b)fluoranthene	38000	0.010
54	Benzo(g,h,i) perylene	38000	0.010
55	Benzo(k)fluoranthene	38000	0.010
66	p-Benzoquinone	ND	ND
	Benzyl Alcohol	38000	0.010
57	Bis(2-Chloroethoxy) methane	38000	0.010
68	Bis(2-Chloroethyl) Ether	38000	0.010
69	Bis(2-chloroisopropyl) ether	38000	0.010
70	Bis(2-ethylhexyl) phthalate	38000	0.010
_	4-Bromophenyl phenyl ether	38000	0.010

		Untreated	
		Waste to	Scrubber
8	BDAT CONSTITUENT	Incinerator	Wastewater
-		(mg/kg)	(mg/l)
5	Semivolatile Organics (cont.)		
2 5	Butyl benzyl phthalate	38000	0.010
3 2	2-Sec-Butyl-4,6-Dinitrophenol	190000	0.050
4 p	o-Chloroaniline	38000	0.010
5 (Chlorobenzilate	NA	NA
6 p	o-Chloro-m-cresol	38000	0.010
7 2	2-Chloronaphthalene	38000	0.010
8 2	2-Chlorophenol	38000	0.010
4	4-Chlorophenyl-phenyl ether	38000	0.010
9 3	3-Chloropropionitrile	NA	NA
	Chrysene	38000	0.010
	Ortho-cresol	38000	0.010
2 ;	para-cresol	38000	0.010
	Cyclohexanone	ND	ND
	Dibenz(a,h)anthracene	38000	0.010
	Dibenzofuran	38000	0.010
4 [Dibenzo(a,e,) Pyrene	NA.	NA
	Dibenzo(a,i) Pyrene	NA .	NA NA
	1,3-Dichlorobenzene	38000	0.010
	1,2-Dichlorobenzene	38000	0.010
	1,4-Dichlorobenzene	38000	0.010
	3,3'Dichlorobenzidine	76000	0.020
	2,4-Dichlorophenol	38000	0.010
	2,6-Dichlorophenol	ND	ND
	Diethyl phthalate	38000	0.010
	3,3'-Dimethoxybenzidine	38000	0.010
	p-Dimethylaminoazobenzene	76000	0.020
•	3,3'-Dimethylbenzidine	ND	ND
	2,4-Dimethylphenol	38000	0.010
	Dimethyl Phthalate	38000	
	Di-n-butyl phthalate	38000	0.010
	1,4-Dinitrobenzene	190000	0.050
	4,6-dinitro-o-cresol	190000	0.050
	2,4-Dinitrophenol	190000	0.050
	2,4-Dinitrotoluene	38000	0.010
	2,6-Dinitrotoluene	38000	0.610
	Di-n-octyl phthalate	38000	0.010
	Di-n-propylnitrosoamine	38000	0.010
	Diphenylamine (1)	76000	0.020
	1,2,-Diphenylhydrazine	190000	0.050
	Fluoranthene	38000	0.010
	Fluorene	38000	0.010
	Hexach Lorobenzene	38000	0.010
	Hexachtor oberizene Hexachtorobutadiene	38000	0.010
	Hexachlorocyclopentadiene	38000	0.010
	Hexachtorocyctopentadrene Hexachtoroethane	38000	0.010
	Hexachtor oethane	NA	NA

		Untreated Waste to		Scrubber
BDAT	CONSȚITUENT	Incinerator (mg/kg)	,	Wastewater (mg/l)
Semi	volatile Organics (cont.)			
Hexa	chloropro pene	ND		ND
Inde	no(1,2,3,-cd) Pyrene	38000		0.010
Isos	afrole	76000		0.020
Isopi	horone	38000		0.010
Meth.	apyrilene	NA		AK
3-Me	thylcholanthrene	76000		0.020
4,41	-Methylene-bis-(2-chloroaniline)	76000		0.020
Meth	yl Methanesulfonate	ND		ND
2-Me	thyl naphthalene	36000		0.010
Naph	thalene	36000		0.010
1,4-	Naphthoquinone	NA		NA
1-Na	phthylamine	180000		0.050
2-Na	phthylamine	180000		0.050
2-Ni	troaniline	178000		0.050
3-Ni	troaniline	178000		0.050
p-Ni	troaniline	178000		0.050
Nitr	obenzene	38000		0.010
2-Ni	trophenol .	38000		0.010
	trophenol	190000		0.050
	trosodi-n-butylamine	ND		ND
	trosodiethylamine	ND		ND
	trosodimethylamine	38000		0.010
	trosomethylethylamine	38000		0.010
	trosomorpholine	38000		0.020
	itrosodiphenylamine (1)	76000		0.010
	trosopiperidine	38000	,	0.010
	itrosopyrrolidine	190000		0.050
	ethyl-5-nitroaniline	76000		0.020
	tach Lorobenzene	ND	•	ND
Pent	tachloroethane	NA		NA
Pent	tachloronitrobenzene	380000		0.100
Pent	tachlorophenol	190000		0.050
Pher	nacetin	76000		0.020
Pher	nanthrene	38000		0.010
Pher	nol	38000		0.010
Phth	nalic Anhydride	ND		ND
	icoline	38000		0.010
Pror	namide	ND		ND
Pyre	en e	38000		0.010
•	orcinal	NA		NA
	role	190000		0.050
	,4,5-Tetrachlorobenzene	76000		0.020
	,4,6-Tetrachlorophenol	ND	, P	ND
	,4-Trichlorobenzene	38000	,	0.010
	,5-Trichlorophenol	190000	•	0.050
	,6-Trichlorophenol	38000	×	0.010
•	s(2,3-dibromopropyl) phosphate	ND	and a	ND

TABLE C-5 (Continued)

	Untreated	
	Waste to	Scrubber
BDAT CONSTITUENT	Incinerator	Wastewater
	(mg/kg)	(mg/l)
Metals - Total Composition		
Antimony	3.3	0.330
Arsenic	2.8	0.280
Barium	0.2	0.002
Beryllium	0.1	0.001
Cadmium	5.0	0.500
Chromium	0.4	0.004
Hexavalent Chromium	0.01	0.010
Copper	0.5	0.005
Lead	1.0	0.500
Mercury	0.02	0.0002
Nickel	1.1	0.011
Selenium	5.0	0.500
Silver	0.7	0.070
Thailium	5.0	0.010
Vanadium	0.4	0.004
Zinc	0.4	0.004
Metals - TCLP (mg/l)		
Antimony		
Arsenic		
Barium		
Beryllium		
Cadmium		
Chromium	NOT	NOT
Copper		
Lead		
Mercury	ANALYZED	ANALYZED
Nickel		
Selenium	•	
Silver		
Thallium		
Vanadium		
Zinc		
Inorganics		
Cyanide	•	0.010
Flouride	•	0.2
Sulfide	•	0.5
Other Parameters		
Chlorides	•	1

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

ND - Not detected, estimated detection limit has not been determined.

TABLE C-6 DETECTION LIMITS FOR K102 BACKGROUND WATER, BACKGROUND QUENCH WATER, AND FINAL QUENCH WATER

		8ackground	Background	Final
		Scrubber	Quench	Quench
8	DAT CONSTITUENT	Water	Water	Water
		(mg/l)	(mg/t)	(mg/l)
Š	Olatile Organics			
,	Acetone	0.010	0.010	0.010
ļ	lcetonitrile	0.100	0.100	0.100
,	Acrolein	0.100	0.100	0.100
,	Acrylonitrile	0.100	0.100	0.100
. 8	Benzene	0.005	0.005	0.005
8	Bromodichtoromethane	0.005	0.005	0.005
	Bromomethane	0.010	0.010	0.010
r	n-Butyl Alcohol	NA	NA	NA
	Carbon Tetrachloride	0.005	0.005	0.005
	Carbon Disulfide	0.005	0.005	0.005
, (Chlorobenzene	0.005	0.005	0.005
) ;	2-Chloro-1,3-Butadiene	0.100	0.100	0.100
	Chlorodibromomethane	0.005	0.005	0.005
	Chloroethane	0.010	0.010	0.010
: :	2-Chloroethylvinylether	0.010	0.010	0.010
	Chloroform	0.005	0.005	0.005
. (Chloromethane	0.010	0.010	0.010
. :	3-Chloropropene ,	0.100	0.100	0.100
	1,2-Dibromo-3-Chloropropane	0.010	0.010	0.010
	1,2-Dibromoethane	0.005	0.005	0.005
	Dibromomethane	0.005	0.005	0.005
,	Trans-1,4-Dichloro-2-Butene	0.100	0.100	0.100
	Dichlorodifluoromethane	0.010	0.010	0.010
	1,1-Dichloroethane	0.005	0.005	0.005
	1,2-Dichloroethane	0.005	0.005	0.005
	1,1-Dichloroethene	0.005	0.005	0.005
	Trans-1,2-Dichloroethene	0.005	0.005	0.005
	1,2-Dichloropropane	0.005	0.005	0.005
	Trans-1,3-Dichloropropene	0.005	0.805	0.005
	cis-1,3,Dichloropropene	0.005	0.005	0.005
	1,4-Dioxane	0.200	0.200	0.200
	2-Ethoxyethanol	NA	NA	NA
	Ethyl Acetate	NA NA	NA	NA
	Ethylbenzene	0.005	0.005	0.005
	Ethyl Cyanide	0.100	0.100	0.100
	Ethyl Ether	NA	NA	NA
	Ethyl Methacrylate	0.100	0.100	0.100
	Ethylene Oxide	NA	NA NA	NA
	Iodomethane	0.050	0.050	0.050
	Isobutyl Alcohal	0.200	0.200	0.200
	Methanol	NA	NA	NA
	Methyl butyl ketone	0.010	0.010	0.010
	Methyl ethyl ketone	0.010	0.010	0.010
		0.010	0.010	0.010
7	Methyl isobutyl ketone Methyl Methacrylate	0.100 ~	0.100	0.100

		Background	Background	Final
		Scrubber	Quench	Quench
	BDAT CONSTITUENT	Water	Water	Water
		(mg/l) -	(mg/l)	(mg/l)
	Volatile Organics (cont.)			
7	Methacrylonitrile	0.100	0.100	0.100
8	Methylene Chloride	0.005	0.005	0.005
0	2-Nitropropane	HA	NA	AA
9	Pyridine	0.400	0.400	0.400
	Styrene	0.005	0.005	0.005
0	1,1,1,2-Tetrachloroethane	0.005	0.005	0.005
1	1,1,2,2-Tetrachloroethane	0.005	0.005	0.005
2	Tetrachloroethene	0.005	0.005	0.005
3	Toluene	0.005	0.005	0.005
4	Tribromomethane(bromoform)	0.005	0.005	0.005
5	1,1,1-Trichloroethane	0.005	0.005	0.005
6	1,1,2-Trichloroethane	0.005	0.005	0.005
7	Trichloroethene	0.005	0.005	0.005
8	Trichloromonofluoromethane	0.005	0.005	0.005
9	1,2,3-Trichloropropane	0.005	0.005	0.005
51	1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	NA
	Vinyl Acetate	0.010	0.010	0.010
0	Vinyl Chloride	0.010	0.010	0.010
	Xylenes	0.005	0.005	0.005
	Semivolatile Organics			
51	Acenaphthalene	0.010	0.010	0.010
52	Acenaphthene	0.010	0.010	0.010
53	Acetophenone	0.020	0.020	0.020
54	2-Acetylaminofluorene	0.020	0.020	0.020
55	4-Aminobiphenyl	0.020	0.020	0.020
56	Aniline	0.010	0.010	0.010
57	Anthracene	0.010	0.010	0.010
58	Aramite	NA	NA	NA
59	Benzo(a)anthracene	0.010	0.010	0.010
18	Benzal Chloride	NA	NA	NA
50	Benzenethiol	ND	ND	ND
61	Benzidine	0.050	0.050	0.050
	Benzoic Acid	0.010	0.010	0.010
52	Benzo(a)pyrene	0.010	0.010	0.010
53	Benzo(b)fluoranthene	0.010	- 0.010	0.010
54	Benzo(g,h,i) perylene	0.010	0.010	0.010
55	Benzo(k)fluoranthene	0.010	0.010	0.010
56	p-Benzoquinone	ND	ND	ND
	Benzyl Alcohol	0.010	0.010	0.010
67	Bis(2-Chloroethoxy) methane	0.010	0.010	0.010
	Bis(2-Chloroethyl) Ether	0.010	0.010	0.010
68	-		0.010	
	Bis(2-chloroisopropyl) ether	0.010	0.010	0.010
58 59 70	Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate	0.010 0.010	0.010	0.010

		Background	Background	Final
	DDAT CONCTITUENT	Scrubber	Quench	Quench
	BDAT CONSTITUENT	Water (mg/l)	Water (mg/l)	Water (mg/l)
			\3/ \/	(mg/ t/
	Semivolatile Organics (cont.)			
2	Butyl benzyl phthalate	0.010	0.010	0.010
5	2-Sec-Butyl-4,6-Dinitrophenol	0.050	0.050	0.050
•	p-Chloroaniline	0.010	0.010	0.010
5	Chlorobenzilate	NA	NA	NA
5	p-Chloro-m-cresol	0.010	0.010	0.010
7	2-Chloronaphthalene	0.010	0.010	0.010
3	2-Chlorophenol	0.010	0.010	0.010
	4-Chlorophenyl-phenyl ether	0.010	0.010	0.010
•	3-Chloropropionitrile	NA	NA	NA
)	Chrysene	0.010	0.010	0.010
l	Ortho-cresol	0.010	0.010	0.010
2	para-cresol	0.010	0.010	0.010
2	Cyclohexanone	ND	ND	ND
5	Dibenz(a,h)anthracene	0.010	0.010	0.010
	Dibenzofuran	0.010	0.010	0.010
•	Dibenzo(a,e,) Pyrene	NA	NA	NA
;	Dibenzo(a,i) Pyrene	NA	NA	NA
Ś	1,3-Dichlorobenzene	0.010	0.010	0.010
7	1,2-Dichlorobenzene	0.010	0.010	0.010
3	1,4-Dichlorobenzene	0.010	0.010	0.010
)	3,3'Dichlorobenzidine	0.020	0.020	0.020
}	2,4-Dichlorophenol	0.010	0.010	0.010
	2,6-Dichtorophenol	ND	ND	ND
2	Diethyl phthalate	0.010	0.010	0.010
,	3,3'-Dimethoxybenzidine	0.010	0.010	0.010
	p-Dimethylaminoazobenzene	0.020	0.020	0.020
;	3,3'-Dimethylbenzidine	ND	ND	ND
•	2,4-Dimethylphenol	0.010	0.010	0.010
P	Dimethyl Phthalate	0.010	0.810	0.010
3	Di-n-butyl phthalate	0.010	0.010	0.010
)	1,4-Dinitrobenzene	0.050	0.050	0.050
)	4,6-dinitro-o-cresol	0.050	0.050	0.050
	2,4-Dinitrophenol	0.050	0.050	0.050
2	2,4-Dinitrotoluene	0.010	0.010	0.010
;	2,6-Dinitrotoluene	0.010	0.010	0.010
Þ	Di-n-octyl phthalate	0.010	0.010	0.010
;	Di-n-propylnitrosoamine	0.010	0.010	0.010
,	Diphenylamine (1)	0.020	0.020	0.020
,	1,2,-Diphenylhydrazine	0.050	0.050	0.050
}	Fluoranthene	0.010	0.010	0.010
,	Fluorene	0.010	0.010	0.010
)	Hexachlorobenzene	0.010	0.010	0.010
	Hexachlorobutadiene	0.010	0.010	0.010
:	Hexachlorocyclopentadiene	0.010	0.010	0.010
;	Hexachloroethane	0.010	0.010	0.010
	Hexachlorophene	NA	NA	NA

		Background	Background	Final
		Scrubber	Quench	Quench
BOAT CONSTITUENT		Water (mg/l)	Water (mg/l)	Water (mg/l)
Semivolatile Organ	nics (cont.)	· · · · · · · · · · · · · · · · · · ·		
Hexach Loropropene		ND	ND	ND
Indeno(1,2,3,-cd)	Pyrene	0.010	0.010	0.010
' Isosafrole		0.020	0.020	0.020
Isophorone		0.010	0.010	0.010
Methapyrilene		NA .	NA	NA
3-Methylcholanthre		0.020	0.020	0.020
	s-(2-chloroaniline)	0.020	0.020	0.020
Methyl Methanesul		ND	ND	ND
2-Methyl naphthale	ene	0.010	0.010	0.010
Naphthalene		0.010	0.010	0.010
1,4-Naphthoquinone		NA	NA	NA
1-Naphthylamine	_	0.050	0.050	0.050
2-Naphthylamine	•	0.050	0.050	0.050
2-Nitroaniline		0.050	0.050	0.050
3-Nitroaniline		0.050	0.050	0.050
p-Nitroaniline		0.050	0.050	0.050
Nitrobenzene		0.010	0.010	0.010
2-Nitrophenol		0.010	0.010	0.010
4-Nitrophenol	t	0.050	0.050	0.050
N-Nitrosodi-n-buty		DИ	NO	ND
N-Nitrosodiethylan	nine	ND	DM	ND
N-Nitrosodimethyla	mine	0.010	0.010	0.010
N-Nitrosomethyleth	ylamine	0.010	0.010	0.010
N-Nitrosomorpholir	ne	0.020	0.020	0.020
N-Nitrosodiphenyla		0.010	0.010	0.010
1-Nitrosopiperidir	ne	0.010	0.010	0.010
N-Nitrosopyrrolidi	ne	0.050	- 0.050	0.050
2-Methyl-5-nitroar		0.020	0.020	0.020
Pentachlorobenzene	!	ND	ND	ND
Pentachloroethane		NA	NA	NA
Pentachloronitrobe	enzene	0.100	0.100	0.100
Pentachlorophenol		0.050	0.050	0.050
Phenacetin		0.020	0.020	0.020
Phenanthrene		0.010	0.010	0.010
Phenol		0.010	0.010	0.010
Phthalic Anhydride	•	ND	ND	ND
2-Picoline		0.010	0.010	0.010
Pronamide Pyrene		ND	ND	ND
Pyrene		0.010	0.010	0.010
Resorcinol		NA	NA	NA
Safrole		0.050	0.050	0.050
1,2,4,5-Tetrachlor	obenzene	0.020	0.020	0.020
2,3,4,6-Tetrachlor	ophenol	ND	ND	ND
1,2,4-Trichloroben		0.010	0.010	0.010
2,4,5-Trichlorophe		0.050	0.050	0.050
2,4,6-Trichlorophe	nol	0.010	0.010	0.010
Tris(2,3-dibromopr	opyl) phosphate	ND	ND	, ND

TABLE C-6 (Continued)

		Background	Background	Final	
		Scrubber	Quench	Quench	
	BDAT CONSTITUENT	Water Water		Water	
		(mg/l)	(mg/l)	(mg/l)	
	Metals - Total Composition	· · · · · · · · · · · · · · · · · · ·			
4	Antimony	0.015	0.033	0.015	
5	Arsenic	0.028	0.028	0.010	
6	Barium	0.002	0.002	0.002	
7	Beryllium	0.001	0.001	0.001	
8	Cadmium	0.005	0.005	0.005	
9	Chromium	0.005	0.005	0.005	
1	Hexavalent Chromium	0.010	0.010	0.010	
0	Copper	0.004	0.004	0.004	
1	Lead	0.005	0.005	0.005	
2	Mercury	0.004	0.0002	0.0002	
3	Nickel	0.009	0.009	0.009	
4	Selenium	0.005	0.005	0.005	
5	Silver	0.007	0.007	0.007	
6	Thallium	0.050	0.010	0.050	
7	Vanadium	0.003	0.003	0.003	
8	Zinc	0.002	0.002	0.002	
	Metals - TCLP				
4	Antimony				
5	Arsenic				
6	Barium .				
7	Beryllium	NO	T		
8	Cadmium				
9	Chromium				
0	Copper		ANALY:	ZED	
1	Lead				
2	•				
	Nickel				
4	Selenium		1		
5	Silver	;		•	
	Thallium				
	Vanadium				
8	Zinc				
	Inorganics				
9	Cyanide	0.010	0.010	0.010	
70	Flouride	0.2	0.2	0.2	
1	Sulfide	0.5	0.9	0.5	
	Other Parameters				
	Chlorides	1	1	1	
	Sulfates	5	5	5	

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

ND - Not detected, estimated detection limit has not been determined.

TABLE C-7 DETECTION LIMITS FOR FOR K102 SAMPLE SET #1

	BDAT CONSTITUENT	Untreated Waste to Incinerator (mg/kg)	Treated Waste (Kiln Ash) (mg/kg)	Scrubber Wastewater (mg/l)
	Yolatile Organics (cont.)	-		· · · · · · · · · · · · · · · · · · ·
2	Acetone	3	3	0.010
1	Acetonitrile	30	30	0.100
2	Acrolein	30	30	0.100
3	Acrylonitrile	30	30	0.100
4	Benzene	1.5	1.5	0.005
5	Bromodichloromethane	1.5	1.5	0.005
6	Bromomethane	3	3	0.010
3	n-Butyl Alcohol	NA.	NA	NA
7	Carbon Tetrachloride	1.5	1.5	0.005
8	Carbon Disulfide	1.5	1.5	0.005
9	Chlorobenzene	1.5	1.5	0.005
0	2-Chloro-1,3-Butadiene	30	30	0.100
1	Chlorodibromomethane	1.5	1.5	0.005
2	Chloroethane	3	3	0.010
3	2-Chloroethylvinylether	3	3	0.010
4	Chloroform		_	
- 5	Chloromethane	1.5	1.5	0.005
6		3	3	0.010
	3-Chloropropene	30	30	0.100
7	1,2-Dibromo-3-Chloropropane	3	3	0.010
8	1,2-Dibromoethane	1.5	1.5	0.005
9	Dibromomethane	1.5	1.5	0.005
0	Trans-1,4-Dichloro-2-Butene	30	30	0.100
1	Dichlorodifluoromethane	3	3	0.010
2	1,1-Dichloroethane	1.5	1.5	0.005
3	1,2-Dichloroethane	1.5	1.5	0.005
4	1,1-Dichloroethene	1.5	1.5	0.005
5	Trans-1,2-Dichloroethene	1.5	1.5	0.005
	1,2-Dichloropropane	1.5	1.5	0.005
7	Trans-1,3-Dichloropropene	1.5	• 1.5	0.005
8	cis-1,3,Dichloropropene	1.5	1.5	0.005
9	1,4-Dioxane	60	60	0.200
4	2-Ethoxyethanol	NA	· NA	NA
5	Ethyl Acetate	NA	, NA	NA
6	Ethylbenzene	1.5	1.5	0.005
0	Ethyl Cyanide	30	30	0.100
7	Ethyl Ether	NA	NA	NA
1	Ethyl Methacrylate	30	30	0.100
4	Ethylene Oxide	NA	NA	NA
2	Iodomethane	15	15	0.050
3	Isobutyi Alcohol	60	60	0.200
8	Methanol	NA	NA	NA
	Mehtyl butyl ketone	3	3	0.010
4	Methyl ethyl ketone	3	3	0.010
9	Methyl isobutyl ketone	3	3	0.010
5	Methyl Methacrylate	30	_ 30	0.100

	PDAT CONSTITUENT	Untreated Waste to	Treated Waste	Scrubber
	BDAT CONSTITUENT	Incinerator (mg/kg)	(Kiln Ash) (mg/kg)	Wastewate (mg/l)
	Volatile Organics (cont.)			
•	Methacrylonitrile	30	30	0.100
	Methylene Chloride	1.5	1.5	0.005
	2-Nitropropane	NA	NA.	NA
	Pyridine	120	120	0.400
	Styrene	1.5	1.5	0.005
	1,1,1,2-Tetrachloroethane	1.5	1.5	0.005
	1,1,2,2-Tetrachloroethane	1.5	1.5	0.005
	Tetrachloroethene	1.5	1.5	0.005
	Toluene	1.5	1.5	0.005
	Tribromomethane(bromoform)	1.5	1.5	0.005
	1,1,1-Trichloroethane	1.5	1.5	0.005
	1,1,2-Trichloroethane	1.5	1.5	0.005
	Trichloroethene	1.5	1.5	
	Trichloromonofluoromethane	1.5	1.5	0.005
	1,2,3-Trichloropropane	1.5	1.5	0.005
	1,1,2-Trichloro-1,2,2-trifluoroethane	NA		0.005
	Vinyl Acetate	3	NA Z	NA 2
	Minut Chlonish	3 3	3	0.010
	Xylenes	1.5	3 1.5	0.010 0.005
	Semivolatile Organics			
	Acenaphthalene	182	1	0.010
!	Acenaphthene	182	1	0.010
	Acetophenone	364	2	0.020
	2-Acetylaminofluorene	364	2	0.020
	4-Aminobiphenyl	364	2	0.020
	Aniline	182	1	0.010
•	Anthracene	182	. 1	0.010
,	Aramite	NA	NA	NA
	Benzo(a)anthracene	182	1	0.010
	Benzal Chloride	AK	NA	NA
	Benzenethiol	ND	ND	ND
	Benzidine	910	5	0.050
	Benzoic Acid	910	5	0.010
	Benzo(a)pyrene	182	1	0.010
	Benzo(b)fluoranthene	182	1	0.010
	Benzo(g,h,i) perylene	182	1	0.010
	Benzo(k)fluoranthene	182	1	0.010
	p-Benzoqui none	ND	ND	OIOIO
	Benzyl Alcohol	182	1	0.010
	Bis(2-Chloroethoxy) methane	182	1	0.010
	Bis(2-Chloroethyl) Ether	182	1	0.010
	Bis(2-chloroisopropyl) ether	182	1	0.010
	Bis(2-ethylhexyl) phthalate	182	1	0.010
		102	1	0.010

		Untreated	Treated	
		Waste to	Waste	Scrubber Wastewater (mg/l)
	BDAT CONSTITUENT	Incinerator (mg/kg)	(Kiln Ash) (mg/kg)	
	<u>Semivolatile Organics</u> (cont.)			
2	Butyl benzyl phthalate	182	1	0.010
3	2-Sec-Butyl-4,6-Dinitrophenol	910	5	0.050
4	p-Chloroaniline	182	1	0.010
5	Chlorobenzilate	NA	NA	NA
6	p-Chloro-m-cresol	182	1	0.010
7	2-Chloronaphthalene	182	1	0.010
8	2-Chlorophenoi	182	1	0.010
	4-Chlorophenyl-phenyl ether	182	1	0.010
9	3-Chloropropionitrile	NA	NA	NA
0	Chrysene	182	1	0.010
1	Ortho-cresol	182	1	0.010
2	para-cresol ,	182	1	0.010
2	Cyclohexanone	ND	ND	ND
3	Dibenz(a,h)anthracene	182	1	0.010
	Dibenzofuran	182	1	0.010
4	Dibenzo(a,e,) Pyrene	NA	NA	NA
5	Dibenzo(a,i) Pyrene	NA	NA	NA
6	1,3-Dichlorobenzene	182	1	0.010
7	1,2-Dichlorobenzene	182	1	0.010
8	1,4-Dichlorobenzene	182	• 1	0.010
9	3,3/Dichlorobenzidine	364	2	0.020
0	2,4-Dichlorophenol	182	. 1	0.010
1	2,6-Dichlorophenol	ND	· ND	ND
2	Diethyl phthalate	182	1	0.010
3	3,3'-Dimethoxybenzidine	182	1	0.010
4	p-Dimethylaminoazobenzene	364	2	
5	•			0.020
6	2,4-Dimethylphenol	ND	ND	ND 0.010
7	Dimethyl Phthalate	182	1	0.010
8	•	182	1 1	0.010
9	Di-n-butyl phthalate	182	1	0.010
0	1,4-Dinitrobenzene	910	5	0.050
1	4,6-dinitro-o-cresol	910	5	0.050
	2,4-Dinitrophenol	910	5	0.050
2	2,4-Dinitrotoluene	182	1	0.010
3	2,6-Dinitrotoluene	182	1	0.010
4	Di-n-octyl phthalate	182	1	0.010
5	Di-n-propylnitrosoamine	182	1	0.010
6	Diphenylamine (1)	364	. 2	0.020
7	1,2,-Diphenylhydrazine	910	5	0.050
8	Fluoranthene	182	1	0.010
9	Fluorene	182	1	0.010
0	Hexachlorobenzene	182	1	0.010
1	Hexachlorobutadiene	182	1	0.010
2	Hexachlorocyclopentadiene	182	1	0.010
3	Hexachloroethane	182	1	0.010
4	Hexach Lorophene	NA	NA	NA

		Untreated Waste to	Treated	
	BDAT CONSTITUENT	Incinerator	Waste	Scrubber
		(mg/kg)	(Kiln Ash) (mg/kg)	Wastewate (mg/l)
	Semivolatile Organics (cont.)			
5	Hexachloropropene	ND	NO	ND
6	Indeno(1,2,3,-cd) Pyrene	182	1	0.010
7	Isosafrole	364	2	0.020
	Isophorone	182	1	0.010
8	Methapyrilene	NA	NA	NA.
9	3-Methylcholanthrene	364	2	0.020
0	4,4'-Methylene-bis-(2-chloroaniline)	364	2	0.020
6	Methyl Methanesulfonate	ND	ND	ND
	2-Methylnaphthalene	182	1	0.010
1	Naphthalene	182	1	0.010
2	1,4-Naphthoquinone	NA	NA.	NA.
3	1-Naphthylamine	910	5	0.050
4	2-Naphthylamine	910	5	0.050
	2-Nitroaniline	910	5	0.050
	3-Nitroaniline	910	5	0.050
5	p-Nitroaniline	910	5	0.050
6	Nitrobenzene	182	1	0.010
	2-Nitrophenol ,	182	1	0.010
7	4-Nitrophenol	910	5	0.050
8	N-Nitrosodi-n-butylamine	ND	ND ·	ND
9	N-Nitrosodiethylamine	ND	ND	ND
0	N-Nitrosodimethylamine	182	1	0.010
9	N-Nitrosodiphenylamine (1)	182	1	0.010
1	N-Nitrosomethylethylamine	182	1	0.020
2	N-Nitrosomorpholine	364	2	0.010
3	1-Nitrosopiperidine	182	1	0.010
4	N-Nitrosopyrrolidine	910	5	0.050
5	2-Methyl-5-nitroaniline	364	2	0.020
6	Pentachlorobenzene	ND	, ND	ND
7	Pentachloroethane	NA	NA.	NA
8	Pentachloronitrobenzene	° 1820	1	0.100
9	Pentachlorophenol	910	5	0.050
0	Phenacetin	364	2	0.020
1	Phenanthrene	182	1	0.010
2	Phenol	182	1	0.010
	Phthalic Anhydride	ND	ND	ND
	2-Picoline	182	1	0.010
4	Pronamide	NO	ND	ND
	Pyrene	182	1	0.010
5	Resorcinol	NA	NA	NA.
	Safrole	910	5	0.050
	1,2,4,5-Tetrachlorobenzene	364	2	0.020
	2,3,4,6-Tetrachlorophenol	ND	ND	ND
	1,2,4-Trichtorobenzene	182	1	0.010
	2,4,5-Trichlorophenol	910	5	0.050
	2,4,6-Trichtorophenol	182	1	0.010
	Tris(2,3-dibromopropyl) phosphate	, од.	ND	ND

TABLE C-7 (Continued)

	1	Untreated Waste to	Treated Waste	easilh -
	BDAT CONSTITUENT	waste to Incinerator	waste (Kiln Ash)	Scrubber
·	SORT CONSTITUENT	(mg/kg) (mg/kg)		Wastewate (mg/l)
!	Metals - Total Composition			
	Antimony	1.5	1.5	0.015
	Arsenic	1.0	1.0	0.010
	Barium	0.2	0.2	0.002
	Beryllium	0.1	0.1	0.010
	Cadmium	0.5	0.5	0.005
	Chromium	0.5	0.5	0.005
1	Hexavalent Chromium (mg/l)	0.01	0.01	0.010
	Copper	0.4	0.4	0.004
	Lead	0.5	0.5	0.005
	Mercury	0.1	0.1	0.0002
	Nickel 🖟	0.9	0.9	0.220
	Selenium	0.5	0.5	0.005
	Silver	0.7	0.7	0.005
_	Thallium	1.0	5.0	0.010
7 '	Vanadium	0.4	0.3	0.003
3	Zinc	0.2	0.2	0.002
ļ	Metals - TCLP (mg/l)			
	Antimony		0.015	
	Arsenic		0.010	
	Barium		0.002	
	Beryllium	NOT	0.001	NOT
	Cadmium		0.005	
	Chromium		0.005	
	Copper	ANALYZED	0.004	ANALYZED
	Lead		0.005	
	Mercury		0.0002	
	Nickel		0.009	
	Selenium		6.050	
	Silver		0.007	
	Thallium		0.500	
	Vanadium		0.004	
2 1	Zinc		0.002	
3 ;	Inopanoi co			
	Inorganics			
	Cyanide		•	0.010
) ()	Cyanide Flouride		• •	0.2
) ()	Cyanide	- - -		
9 (0 (Cyanide Flouride	• •	- - -	0.2
9 (0 1) 1 1) 2	Cyanide Flouride Sulfide	- - -		0.2

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

ND - Not detected, estimated detection limit has not been determined.

^{- -} No detection limit established.

TABLE C-8 DETECTION LIMITS FOR K102 SAMPLE SETS #2 AND #3

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	, Incinerator (Kiln Ash)		Wastewate
		(mg/kg)	(mg/kg)	(mg/l)
	Volatile Organics			
22	Acetone	3	3	0.010
1	Acetonitrile	30	30	0.100
2	Acrolein	30	30	0.100
3	Acrylonitrile	30	30	0.100
4	Benzene	1.5	1.5	0.005
5	Bromodichloromethane	1.5	1.5	0.005
6	Bromomethane	3	3	0.010
23	n-Butyl Alcohol	NA	NA	NA
7	Carbon Tetrachloride	1.5	1.5	0.005
8	Carbon Disulfide	1.5	1.5	0.005
9	Chlorobenzene	1.5	1.5	0.005
10	2-Chloro-1,3-Butadiene	30	30	0.100
11	Chlorodibromomethane	1.5	1.5	0.005
12	Chloroethane	3	3	0.010
13	2-Chloroethylvinylether	3	3	0.010
14	Chloroform	1.5	1.5	0.005
15	Chloromethane	3	3	0.010
16	3-Chloropropene	30	30	0.100
17	1,2-Dibromo-3-Chloropropane	3	3	0.010
18	1,2-Dibromoethane	1.5	1.5	0.005
19	Dibromomethane	1.5	1.5	0.005
20	Trans-1,4-Dichloro-2-Butene	30	30	0.100
21	Dichlorodifluoromethane	3	3	0.010
22	1,1-Dichloroethane	1.5	1.5	0.005
23	1,2-Dichloroethane	1.5	1.5	0.005
24	1,1-Dichloroethene	1.5	1.5	0.005
	Trans-1,2-Dichloroethene	1.5	1.5	0.005
26	1,2-Dichloropropane	1.5	1.5	0.005
27	Trans-1,3-Dichloropropene	1.5	1.5	0.005
28	cis-1,3,Dichloropropene	1.5	1.5	0.005
29	1,4-Dioxane	60	60	0.200
24	2-Ethoxyethanol	NA	NA	NA
25	Ethyl Acetate	NA	NA	NA
26	Ethylbenzene	1.5	1.5	0.005
30	Ethyl Cyanide	30	30	0.100
27	Ethyl Ether	NA.	NA	NA
31	Ethyl Methacrylate	30	30	0.100
14	Ethylene Oxide	NA NA	NA	NA
32	Iodomethane	15	15	0.050
33	Isobutyl Alcohol	60	60	0.200
28	Methanol	NA	NA	NA
	Methyl butyl ketone	3	3	0.010
34	Hethyl ethyl ketone	3	3	0.010
29	Methyl isobutyl ketone	3	3	0.010
35	Methyl Methacrylate	30	30	0.100

TABLE C-8 (Continued)

	BDAT CONSTITUENT	Untreated Waste to Incinerator	Treated Waste (Kiln Ash) (mg/kg)	Scrubber Wastewater (mg/l)
		(mg/kg)	(mg/kg)	(mg/t)
	Volatile Organics (cont.)			
7	Methacrylonitrile	30	30	0.100
8	Methylene Chloride	1.5	1.5	0.005
0	2-Nitropropane	NA	NA	NA
9	Pyridine	120	120	0.400
	Styrene	1.5	1.5	0.005
0	1,1,1,2-Tetrachloroethane	1.5	1.5	0.005
1	1,1,2,2-Tetrachloroethane	1.5	1.5	0.005
2	Tetrachloroethene	1.5	1.5	0.005
3	Toluene	1.5	1.5	0.005
4	Tribromomethane(bromoform)	1.5	1.5	0.005
+ 5	1,1,1-Trichloroethane	1.5	1.5	0.005
, 6	1,1,2-Trichloroethane	1.5	1.5	0.005
7	Trichloroethene	1.5	1.5	0.005
48	Trichloromonofluoromethane	1.5	1.5	0.005
,9	1,2,3-Trichloropropane	1.5	1.5	0.005
31	1,1,2-Trichloro-1,2,2-trifluoroethane	NA.	NA	NA
•	Vinyl Acetate	3	3	0.010
50	•	3	3	0.010
,.	Xylenes	1.5	1.5	0.005
	Semivolatile Organics			
51	Acenaphthalene	19.4	1	0.010
52	Acenaphthene	19.4	1	0.010
53	Acetophenone	38.8	2	0.020
54	·	38.8	2	0.020
	4-Aminobiphenyl	38.8	2	0.020
56		19.4	1	0.010
57		19.4	1	0.010
58		NA	NA	NA .
59		19.4	1	0.010
18		NA	NA	NA
60		ND	ND	ND
61		97	5	0.050
- 1	Benzoic Acid	98	5	0.010
62		19.4	1	0.010
63	• •	19.4	1	0.010
~ 54		19.4	1	0.010
 55		19.4	1	0.010
56 56		ND	ND	ND
	Benzyl Alcohol	19.4	1	0.010
67	-	19.4	1	0.010
		19.4	1	0.010
68 40		19.4	1	0.010
69		19.4	1	0.010
70				

		Untreated Waste to	Treated Waste	Scrubber
	BDAT CONSTITUENT	Incinerator	(Kiln Ash)	Wastewate:
		(mg/kg)	(mg/l)	
	Semivolatile Organics (cont.)			
2	Butyl benzyl phthalate	19.4	1	0.010
3	2-Sec-Butyl-4,6-Dinitrophenol	97	5	0.050
•	p-Chloroaniline	19.4	1	0.010
5	Chlorobenzilate	NA	NA	NA
5	p-Chloro-m-cresol	19.4	1	0.010
7	2-Chloronaphthalene	19.4	1	0.010
3	2-Chlorophenol	19.4	1	0.010
	4-Chlorophenyl-phenyl ether	19.4	1	0.010
7	3-Chloropropionitrile	NA	NA	HA
)	Chrysene	19.4	1	0.010
1	Ortho-cresol	19.4	1	0.010
2	para-cresol	19.4	1	0.010
2	Cyclohexanone	ND	ND	ND
3	Dibenz(a,h)anthracene	19.4	1	0.010
	Dibenzofuran	19.4	1	0.010
4	Dibenzo(a,e,) Pyrene	NA NA	NA.	NA
5	Dibenzo(a,i) Pyrene	NA NA	NA.	NA
5	1,3-Dichlorobenzene	19.4	1	0.010
7	1,2-Dichlorobenzene	19.4	1	0.010
3	1,4-Dichlorobenzene	19.4	1	0.010
9	3,3'Dichlorobenzidine	38	2	0.020
0	2,4-Dichlorophenol	19.4	1	0.010
1	2,6-Dichlorophenol	ND	ND	ND
2	Diethyl phthalate	19.4	1	0.010
3	3,3'-Dimethoxybenzidine	19.4	1	0.010
4	p-Dimethylaminoazobenzene	38.8	2	0.020
5		ND	ND	ND
6	2,4-Dimethylphenol	19.4	1	0.010
7	Dimethyl Phthalate	19.4	• 1	0.010
8	Di-n-butyl phthalate	19.4	1	0.010
9	1,4-Dinitrobenzene	97	5	0.050
3	4,6-dinitro-o-cresol	98	5	0.050
1	2,4-Dinitrophenol	98	5	0.050
2	2,4-Dinitrotoluene	19.4	1	0.010
3	2,6-Dinitrotoluene	19.4	1	0.010
4	Di-n-octyl phthalate	19.4	1	0.010
5	Di-n-propylnitrosoamine	19.4	1	0.010
6	Diphenylamine (1)	38.8	2	0.020
7	1,2,-Diphenylhydrazine	97	5	0.050
8	Fluoranthene	19.4	1	0.010
9	Fluorene	19.4	1	0.010
Ó	Hexachlorobenzene	19.4	1	0.010
1	Hexachlorobutadiene	19.4	1	0.010
2	Hexachlorocyclopentadiene	19.4	1	0.010
3	Hexachloroethane	19.4	1	0.010
-	Hexachlorophene	. NA	NA	NA

		Untreated Waste to	Treated Waste	Scrubber
BDAT ((Kiln Ash)	Wastewate
BUAL	CONSTRICENT	(mg/kg)	(mg/kg)	(mg/l)
Semiv	olatile Organics (cont.)			
5 Hexac	hloropropene	ND	ND	ND
5 Inden	o(1,2,3,-cd) Pyrene	19.4	1	0.010
7 Isosa	frole	38.8	2	0.010
Isoph	orone	19.4	1	0.020
8 Metha	pyrilene	NA	NA	NA
9 3-Met	hylcholanthrene	38.8	2	0.020
0 4,4'-	Methylene-bis-(2-chloroaniline)	38.8	2	0.020
6 Methy	l Methanesulfonate	ND	DM	ND
2-Met	hylnaphthalene	19.4	1	0.010
1 Napht	halene	19.4	1	0.010
2 1,4-N	aphthoquinone	NA	NA	NA
3 1-Nap	hthylamine	97	5	0.050
4 2-Nap	hthylamine	97	5	0.050
2-Nit	roaniline	98	5	0.050
3-Nit	roaniline	98	5	0.050
5 p-Nit	roaniline	98	5	0.050
6 Nitro	benzene	19.4	1	0.010
2-Nit	rophenol (19.4	1	0.010
7 4-Nit	rophenol	98	5	0.050
8 N-Nit	rosodi-n-butylamine	ИD	ND	ND
	rosodiethylamine	ND	ND	ND
	rosodimethylamine	19.4	1	0.010
	rosodiphenylamine (1)	19.4	1	0.010
	rosomethylethylamine	19.4	1	0.020
	rosomorpholine	38.8	2	0.010
	rosopiperidine	19.4	1	0.010
	rosopyrrolidine	97	5	0.050
	hyl-5-nitroeniline	38.8	2	0.020
	ichlorobenzene	ND	• ND	ND
7 Penta	chloroethane	NA	NA	NA
8 Penta	ich Loroni trobenzene	194	1	0.100
9 Penta	ichlorophenol	98	5	0.050
0 Phena	cetin	38.8	2	0.020
1 Phena	inthrene	19.4	1	0.010
2 Pheno	ı	19.4	1	0.010
	alic Anhydride	ND	ND	ND
	coline	19.4	1	0.010
4 Prona		ND	ND	ND
5 Pyrer	ne e	19.4	1	0.010
•	cinal	NA	NA	NA
7 Safro	le	97	5	0.050
	,5-Tetrachlorobenzene	38.8	2	0.020
	,6-Tetrachlorophenol	ND	ND	ND
	-Trichlorobenzene	19.4	1	0.010
	-Trichlorophenol	98	5	0.050
-	-Trichlorophenol	19.4	1	0.010
	2,3-dibromopropyl) phosphate	ND '	ND	ND

TABLE C-8 (Continued)

		Untreated	Treated		
		Waste to	Waste	Scrubber	
	BDAT CONSTITUENT	Incinerator	(Kiln Ash)	Wastewater	
		(mg/kg)	(mg/kg)	(mg/l)	
	Metals - Total Composition				
4	Antimony	1.5	1.5	0.015	
5	Arsenic	1.0	1.0	0.010	
6	Barium	0.2	0.2	0.002	
7	Beryllium	0.1	0.1	0.001	
8	Cadmium	0.5	0.5	0.005	
9	Chromium	0.5	0.5	0.005	
1	Hexavalent Chromium (mg/l)	0.01	0.01	0.010	
0	Copper	0.4	0.4	0.004	
1	Lead	0.5	0.5	0.005	
2	Mercury	0.1	0.1	0.0002	
3	Nickel	0,9	0.9	0.220**	
4	Selenium	0.5	0.5	0.005	
5	Silver	0.7	0.7	0.005	
6	Thallium	1.0	1.0	0.010	
7	Vanadium	0.4	0.4	0.003	
8	Zinc	0.2	0.2	0.002	
	Metals - TCLP (mg/l)				
4	Antimony		0.015		
	Arsenic		0.010		
	Barium		0.002		
	Beryllium	NOT	0.001	NOT	
	Cadmium		0.005	1101	
9	Chromium		0.007+		
0	Copper	ANALYZED	0.004	ANALYZED	
	Lead		0.005		
2	Mercury		0.0002+		
3	Nickel		0.009		
4	Selenium		9.005		
5	Silver		0.007+		
6	Thallium		0.200+		
7	Vanadi um		0.004+		
8	Zinc		0.002		

TABLE C-8 (Continued)

BDAT CONSTITUENT .	Untreated Waste to Incinerator (mg/kg)	Treated Waste (Kiln Ash) (mg/kg)	Scrubber Wastewater (mg/l)
Inorganics			
Cyanide	•	-	0.01
Flouride	•	•	0.2
Sulfide	•	•	0.5
Other Parameters			
Chlorides	•	-	1
Sulfates	•	•	5

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

ND - Not detected, estimated detection limit has not been determined.

^{** -} Detection limit for sample set 3 for Nickel is 0.110 mg/l. .

^{+ -} Detection limits for sample set 3 for Chromium, Mercury, Silver, and Vanadium were 0.007, 0.0004, 0.006, 0.010, and 0.006 mg/l, respectively.

^{- -} No detection limits have been established.

TABLE C-9 DETECTION LIMITS FOR K102 SAMPLE SETS #4 AND #5

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT		(Kiln Ash)*	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
	Volatile Organics			
2	Acetone	3	3	0.010
	Acetonitrile	30	30	0.100
	Acrolein	30	30	0.100
5	Acrylonitrile	30	30	0.100
•	Benzene	1.5	1.5	0.005
5	Bromodichloromethane	1.5	1.5	0.005
5	8romomethane	3	3	0.010
5	n-Butyl Alcohol	NA	NA	NA
•	Carbon Tetrachloride	1.5	1.5	0.005
}	Carbon Disulfide	1.5	1.5	0.005
,	Chlorobenzene	1.5	1.5	0.005
0	2-Chloro-1,3-Butadiene	30	30	0.100
1	Chlorodibromomethane	1.5	1.5	0.005
2	Chloroethane	3	3	0.010
5	2-Chloroethylvinylether	3	3	0.010
	Chloroform	1.5	1.5	0.005
	Chloromethane	3	3	0.010
	3-Chloropropene	30	30	0.100
	1,2-Dibromo-3-Chloropropane	3	3	0.010
3	1,2-Dibromoethane	1.5	1.5	0.005
9	Dibromomethane	1.5	1.5	0.005
	Trans-1,4-Dichloro-2-Butene	30	30	0.100
1	Dichlorodifluoromethane	3	3	0.010
2	1,1-Dichloroethane	1.5	1.5	0.005
3	1,2-Dichloroethane	1.5	1.5	0.005
4	1,1-Dichloroethene	1.5	1.5	0.005
5	•	1.5	1.5	0.005
	1,2-Dichloropropane	1.5	1.5	0.005
7 8	Trans-1,3-Dichloropropene cis-1,3,Dichloropropene	1.5	1.5	0.005
9	1,4-Dioxane	1.5 60	1.5 60	0.005 0.200
4	2-Ethoxyethanol	NA NA	NA	U.20U NA
;	Ethyl Acetate	NA NA	NA NA	NA NA
, 5	Ethylbenzene	1.5	1.5	0.005
)	Ethyl Cyanide	30	30	0.100
7	Ethyl Ether	NA	NA	NA
	Ethyl Methacrylate	30	30	0.100
! •	Ethylene Oxide	NA	NA	NA
•	Iodomethane	15	15	0.050
5	Isobutyl Alcohol	60	60	0.200
3	Methanol	NA	NA	0.200 NA
_	Methyl butyl ketone	3	3	0.010
4	Methyl ethyl ketone	3	3	0.010
,	Methyl isobutyl ketone	3	3	0.010
;	Methyl Methacrylate	30	30	0.100

	PRAT CONCILLICAT	Untreated Waste to Incinerator	Treated Waste (Kiln Ash)*	Scrubber Wastewater
	BOAT CONSTITUENT	(mg/kg)	(mg/kg)	(mg/l)
	Volatile Organics (cont.)			
7	Methacrylonitrile	30	30	0.100
8	Methylene Chloride	1.5	1.5	0.005
0	2-Nitropropane	NA	NA	NA
9	Pyridine	120	120	0.400
	Styrene	1.5	1.5	0.005
0	1,1,1,2-Tetrachloroethane	1.5	1.5	0.005
1	1,1,2,2-Tetrachloroethane	1.5	1.5	0.005
2	Tetrachloroethene	1.5	1.5	0.005
3	Toluene	1.5	1.5	0.005
4	Tribromomethane(bromoform)	1.5	1.5	0.005
5	1,1,1-Trichloroethane	1.5	1.5	0.005
6	1,1,2-Trichloroethane	1.5	1.5	0.005
7	Trichloroethene	1.5	1.5	0.005
8	Trichloromonofluoromethane	1.5	1.5	0.005
9	1,2,3-Trichloropropane	1.5	1.5	0.005
1	1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	NA
•	Vinyl Acetate	3	3	0.010
כ	Vinyt Chloride .	3	3	0.010
•	Xylene ² 3	1.5	1.5	0.005
	<u>Semivolatile Organics</u>			
1	Acenaphthalene	194	1	0.010
2	Acenaphthene	194	1	0.010
3	Acetophenone	388	2	0.020
4	2-Acetylaminofluorene	388	2	0.020
5	4-Aminobiphenyl	388	2	0.020
6	Aniline	194	1	0.010
7	Anthracene	194	1	0.010
8	Aramite	NA	NA	NA
9	Benzo(a)anthracene	194	1	0.010
8	Benzal Chloride	NA	NA	NA
0	Benzenethiol	ND	ND	ND
1	Benzidine	970	5	0.050
	Benzoic Acid	980	5	0.010
2	Benzo(a)pyrene	194	1	0.010
3	Benzo(b)fluoranthene	194	1	0.010
4	Benzo(g,h,i) perylene	194	1	0.010
5	Benzo(k)fluoranthene	194	1	0.010
6	p-Benzoqui none	ND	ND	ND
_	Benzyl Alcohol	194	1	0.010
7	Bis(2-Chloroethoxy) methane	194	1	0.010
8	Bis(2-Chloroethyl) Ether	194	1	0.010
J	Bis(2-chloroisopropyl) ether	194	1	0.010
0				
9	Bis(2-ethylhexyl) phthalate	194	1	0.010

		Untreated	Treated	
		Waste to	Waste	Scrubber Wastewater
	BDAT CONSTITUENT	Incinerator	(Kiln Ash)*	
		(mg/kg)	(mg/kg)	(mg/l)
	Semivolatile Organics (cont.)			
2	Butyl benzyl phthalate	194	1	0.010
3	2-Sec-Butyl-4,6-Dinitrophenol	970	5	0.050
4	p-Chloroaniline	194	1	0.010
5	Chlorobenzilate	NA	NA	NA
6	p-Chloro-m-cresol	194	1	0.010
7	2-Chloronaphthalene	194	1	0.010
8	2-Chlorophenol	194	1	0.010
	4-Chlorophenyl-phenyl ether	194	1	0.010
9	3-Chloropropionitrile	NA	NA	NA
0	Chrysene	194	1	0.010
1	Ortho-cresol	194	1	0.010
2	para-cresol	194	1	0.010
2	Cyclohexanone	ND	, ND	ND
3	Dibenz(a,h)anthracene	194	1	0.010
	Dibenzofuran	194	1	
4	Dibenzo(a,e,) Pyrene	NA	NA	0.010
5	Dibenzo(a,i) Pyrene	NA NA	NA NA	NA WA
6	1,3-Dichlorobenzene	194		NA O O1O
7	1,2-Dichlorobenzene	194	1	0.010
8	1,4-Dichlorobenzene	194	1 8	0.010
9	3,3'Dichlorobenzidine	380	1	0.010
0	2,4-Dichlorophenol		2	0.020
1	2,6-Dichlorophenol	194	1	0.010
2	Diethyl phthalate	ND	ND	ND
3	3,3'-Dimethoxybenzidine	194	1	0.010
		194	1	0.010
4	p-Dimethylaminoazobenzene	388	2	0.020
5 6	3,3'-Dimethylbenzidine 2,4-Dimethylphenol	ND	ND	ND
7		194	1	0.010
8	Dimethyl Phthalate	194	1	0.010
	Di-n-butyl phthalate	194	1	0.010
9	1,4-Dinitrobenzene	970	5	0.050
0	4,6-dinitro-o-cresol	980	5	0.050
1	2,4-Dinitrophenol	980	5	0.050
2	2,4-Dinitrotoluene	194	1	0.010
3	2,6-Dinitrotoluene	194	1	0.010
4	Di-n-octyl phthalate	194	1	0.010
5	Di-n-propylnitrosoamine	194	1	0.010
6	Diphenylamine (1)	388	2	0.020
7	1,2,-Diphenylhydrazine	970	5	0.050
8	Fluoranthene	194	1	0.010
9	fluorene	194	1	0.010
0	Hexach Lorobenzene	194	1	0.010
1	Hexachlorobutadiene	194	1	0.010
2	Hexachlorocyclopentadiene	194	1	0.010
3	Hexachloroethane	194	1	0.010
4	Hexach Lorophene	NA	NA	NA

		Untreated Waste to	Treated Waste	Scrubber
BOA	AT CONSTITUENT	Incinerator (mg/kg)	(Kiln Ash)* (mg/kg)	Wastewate (mg/l)
Sen	mivolatile Organics (cont.)			
5 Hex	xachloropropene	ND	ND	ND
5 Inc	deno(1,2,3,-cd) Pyrene	194	1	0.010
7 Iso	osafrole	388	2	0.020
Isc	ophorone	194	1	0.010
8 Met	thapyrilene	NA	NA	NA
9 3-1	Methylcholanthrene	388	2	0.020
	4'-Methylene-bis-(2-chloroaniline)	388	2	0.020
-	thyl Methanesulfonate	ND	ND	ND
	Methylnaphthalene	194	1	0.010
	phthalene	194	1	0.010
	4-Naphthoquinone	NA	NA.	NA
	Naphthylamine	970	5	0.050
	Naphthylamine	970	5	0.050
	Nitroaniline	980	5	0.050
	Nitroaniline	980	5	0.050
		980	5	0.050
-	Nitroaniline	194	1	0.010
	trobenzene	194	1	0.010
	Nitrophenol (5	0.050
	Nitrophenol	980		
	Nitrosodi-n-butylamine	ND	ND	ND
	Nitrosodiethylamine	ND 107	ND	ND
	Nitrosodimethylamine	194	1	0.010
	Nitrosodiphenylamine (1)	194	1	0.010
	Nitrosomethylethylamine	194	1	0.020
	Nitrosomorpholine	388	2	0.010
	Nitrosopiperidine	194	1	0.010
	Nitrosopyrrolidine	970	5	0.050
	Methyl-5-nitroaniline	388	2	0.020
-	entach lorobenzene	ND	DM	ND
	entachloroethane	NA	NA	NA
	entachloronitrobenzene	1940	1	0.100
	entachlorophenol	980	5	0.050
	nenacetin	388	2	0.020
	nenanthrene	194	1	0.010
	nenol	194	1	0.010
	ithalic Anhydride	ND	ND	ND
3 2-	Picoline	194	1	0.010
	ronamide	ND	ND	ND
5 Py	/rene	194	1	0.010
6 Re	esorcinol	NA	NA	NA
7 Sa	afrole	970	5	0.050
8 1,	2,4,5-Tetrachlorobenzene	388	2	0.020
92,	3,4,6-Tetrachlorophenol	ND	ND	ND
0 1,	2,4-Trichlorobenzene	194	1	0.010
1 2,	4,5-Trichlorophenol	980	5	0.050
2 2,	4,6-Trichlorophenol	194	1	0.010
3 Tr	is(2,3-dibromopropyl) phosphate	ND	ND	ND

TABLE C-9 (Continued)

	BDAT CONSTITUENT	Untreated Waste to Incinerator (mg/kg)	Treated Waste (Kiln Ash)* (mg/kg)	Scrubber Wastewater (mg/l)
	Metals - Total Composition			
154	Antimony	1.5	1.5	0.015
155	Arsenic	1.0	1.0	0.010
156	Barium	0.2	0.2	0.002
157	Beryllium	0.1	0.10	0.001
158	Cadmium	0.5	0.5	0.005
159	Chromium	0.5	0.5	0.005
221	Hexavalent Chromium (mg/l)	0.01	0.01	0.010
160	Copper	0.4	0.4	0.004
161	Lead	0.5	0.5	0.005
162	Mercury	0.1	0.1	0.0002
163	Nickel	1.1+	0.9	0.009
164	Selenium	0.5	0.5	0.005
165	Silver	0.7	0.7	0.005
166	Thattium	1.0	1.0	0.010
167	Vanadium	0.4	0.3	0.003
168	Zinc	0.2	0.2	0.002
	Metals - TCLP (mg/l)			
154	Antimony		0.015	
155	Arsenic		0.010	
156	Barium		0.002	
157	Beryllium	NOT	0.001	NOT
158	Cadmium		0.005	
159	Chromium		0.005	
160	Copper	ANALYZED	0.004	ANALYZED
161	Lead		0.005	
162	Mercury		9.0002	
163	Nickel		0.009	
164	Selenium		0.005	
165	Silver		0.007	
166	Thallium		0.100	
167	Vanadium		0.004	
168	Zinc		0.002	

TABLE C-9 (Continued)

BDAT CONSTITUENT	Untreated Waste to Incinerator (mg/kg)	Treated Waste (Kiln Ash)* (mg/kg)	Scrubber Wastewater (mg/l)
Inorganics			
Cyanide	•	-	0.01
Flouride	-	•	0.2
Sulfide	-	•	0.5
Other Parameters			
Chlorides	•	•	1
Sulfates	•	•	5

^{* -} No samples were taken for Sample Set #5.

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

ND - Not detected, estimated detection limit has not been determined.

^{+ -} The detection limit for sample set 5 for Nickel is 11 mg/kg.

^{- -} No detection limit has been established.

TABLE C-10 DETECTION LIMITS FOR K102 SAMPLE SET #6

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	Incinerator	(Kiln Ash)	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
	Volatile Organics			
22	Acetone	3		0.010
1	Acetonitrile	30		0.100
2	Acrolein	30		0.100
3	Acrylonitrile	30		0.100
4	Benzene	1.5		0.005
5	Bromodichloromethane	1.5	NO	0.005
6	Bromomethane	3		0.010
23	n-Butyl Alcohol	NA		NA
7	Carbon Tetrachloride	1.5		0.005
8	Carbon Disulfide	1.5		0.005
9	Chlorobenzene	1.5	SAMPLES	0.005
10	2-Chloro-1,3-Butadiene	30		0.100
11	Chlorodibromomethane	1.5		0.005
12	Chloroethane	3		0.010
13	2-Chloroethylvinylether	3	TAKEN	0.010
14	Chloroform	1.5		0.005
15	Chloromethane	3		0.010
16	3-Chloropropene '	30		0.100
17	1,2-Dibromo-3-Chloropropane	3		0.010
18	1,2-Dibromoethane	1.5		0.005
19	Dibromomethane	1.5		0.005
20	Trans-1,4-Dichloro-2-Butene	30		0.100
21	Dichlorodifluoromethane	3		0.010
22	1,1-Dichloroethane	1.5		0.005
23	1,2-Dichloroethane	1.5		0.005
24	1,1-Dichloroethene	1.5		0.005
25	Trans-1,2-Dichloroethene	1.5		0.005
26	1,2-Dichloropropane	1.5		0.005
27	Trans-1,3-Dichloropropene	1.5		0.005
28	cis-1,3,Dichloropropene	1.5		0.005
29	1,4-Dioxane	60		0.200
24	2-Ethoxyethanol	NA		NA
25	Ethyl Acetate	NA		NA
25	Ethylbenzene	1.5		0.005
30	Ethyl Cyanide	30		0.100
27	Ethyl Ether	NA		NA
31	Ethyl Methacrylate	30		0.100
14	Ethylene Oxide	NA		` NA
32	Iodomethane	15		0.050
33	Isobutyl Alcohol	60		0.200
28	Methanol	NA		NA
	Methyl butyl ketone	3		0.010
34	Methyl ethyl ketone	3		0.010
29	Methyl isobutyl ketone	3		0.010
35	Methyl Methacrylate	30		0.100

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	Incinerator (mg/kg)	(Kiln Ash) (mg/kg)	Wastewater (mg/l)
		(1137 < 37	(ma) Na)	(1197.17
	<u>Volatile Organics</u> (cont.)			
7	Methacrylonitrile	30		0.100
8	Methylene Chloride	1.5		0.005
0	2-Nitropropane	NA		NA
9	Pyridine	120		0.400
	Styrene	1.5		0.005
0	1,1,1,2-Tetrachloroethane	1.5		0.005
1	1,1,2,2-Tetrachloroethane	1.5		0.005
2	Tetrachloroethene	1.5		0.005
3	Toluene	1.5		0.005
4	Tribromomethane(bromoform)	1.5		0.005
5	1,1,1-Trichloroethane	1.5		0.005
6	1,1,2-Trichloroethane	1.5		0.005
7	Trichloroethene	1.5		0.005
8	Trichloromonofluoromethane	1.5		0.005
9	1,2,3-Trichloropropane	1.5		0.005
1	1,1,2-Trichloro-1,2,2-trifluoroethane	NA		NA
	Vinyl Acetate	3	NO	0.010
0	Vinyl Chloride	3		0.010
	Xylenes ₺	1.5		0.005
	Semivolatile Organics		SAMPLES	
1	Acenaphthalene	184		10
2	Acenaphthene	184		10
3	Acetophenone	368	TAKEN	20
4	2-Acetylaminofluorene	368		20
5	4-Aminobiphenyl	368		20
6	Aniline	184		10
7	Anthracene	184		10
8	Aramite	NA		N.A
9	Benzo(a)anthracene	184		10
8	Benzal Chloride	NA		NA
0	Benzenethiol	ND		ND
1	Benzidine	920		50
	Benzoic Acid	918		10
2	Benzo(a)pyrene	184		10
3	Benzo(b)fluoranthene	184		10
4	Benzo(g,h,i) perylene	184		10
5	Benzo(k)fluoranthene	1840		10
6	p-Benzoquinone	ND		ND
	Benzyl Alcohol	184		10
	Bis(2-Chloroethoxy) methane	184		10
7				10
		184		
8	Bis(2-Chloroethyl) Ether	184 184		
		184 184 184		. 10 10

		Untreated	Treated	
		Waste to	Waste	Scrubber
	BDAT CONSTITUENT	•		Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
	<u>Semivolatile Organics</u> (cont.)			
	Butyl benzyl phthalate	184		10
;	2-Sec-Butyl-4,6-Dinitrophenol	920		50
•	p-Chloroaniline	184		10
	Chlorobenzilate	NA		NA
•	p-Chloro-m-cresol	184		10
•	2-Chloronaphthalene	184		10
}	2-Chlorophenol	184		10
	4-Chlorophenyl-phenyl ether	184		10
)	3-Chloropropionitrile	NA		МА
)	Chrysene	184		10
	Ortho-cresol	184		10
?	para-cresol	184		10
2	Cyclohexanone	ND		NO
;	Dibenz(a,h)anthracene	184		10
	Dibenzofuran	184		10
	Dibenzo(a,e,) Pyrene	NA		NA NA
;	Dibenzo(a,i) Pyrene	NA		NA NA
	1,3-Dichlorobenzene	184		10
,	1,2-Dichlorobenzene	184		80
3	1,4-Dichlorobenzene	184		10
)	3,3'Dichlorobenzidine	366		20
)	2,4-Dichlorophenol	184	NO	10
	2,6-Dichlorophenol	ND		ND
2	Diethyl phthalate	184		10
5	3,3'-Dimethoxybenzidine	184		10
	p-Dimethylaminoazobenzene	368	SAMPLES	20
;	3,3'-Dimethylbenzidine	ND	omn cco	ND
5	2,4-Dimethylphenol	184		10
,	Dimethyl Phthalate	184		10
3	Di-n-butyl phthalate	184	TAKEN	10
,	1,4-Dinitrobenzene	920		50
)	4,6-dinitro-o-cresol	918		50
ì	2,4-Dinitrophenol	918		50
	2,4-Dinitrotoluene	184		10
5	2,6-Dinitrotoluene	184		10
	Di-n-octyl phthalate	184		10
;	Di-n-propylnitrosoamine	184		10
5	Diphenylamine (1)	368		20
,	1,2,-Diphenylhydrazine	920		50
3	Fluoranthene	184		10
,	Fluorene	184		10
)	Hexachlorobenzene	184		10
, 	Hexachlorobutadiene	184		10
2	Hexachlorocyclopentadiene	184		10
5	Hexachloroethane	184		10
•	Hexachlorophene	NA		NA NA

		Untreated	Treated	
		Waste to	Waste	Scrubber
i	BDAT CONSTITUENT	Incinerator	(Kiln Ash)	Wastewater
		(mg/kg)	(mg/kg)	(mg/l)
:	Semivolatile Organics (cont.)	-		
	Hexach Loropropene	ND		NE
1	Indeno(1,2,3,-cd) Pyrene	184		10
,	Isosafrole	368		20
	I sophorone	184		10
1	Methapyrilene	HA		N/
) ;	3-Methylcholanthrene	368		20
	4,4'-Methylene-bis-(2-chloroaniline)	368		20
	Methyl Methanesulfonate	ND		NC
	2-Methylnaphthalene	184		10
ì	Naphthalene	184		10
	1,4-Naphthoquinone	NA		N.A
	1-Naphthylamine	920		50
	2-Naphthylamine	920		50
	2-Nitroaniline	918		50
	3-Nitroaniline	918		50
1	p-Nitroaniline	918		50
.	Nitrobenzene	184		10
	2-Nitrophenol '	184		10
	4-Nitrophenol	918		50
	N-Nitrosodi-n-butylamine	ND		NC
۱ ا	Malitrocodiethylomine	XD		lio AU
	N-Nitrosodimethylamine	184		10
	N-Nitrosodiphenylamine (1)	184		10
	N-Nitrosomethylethylamine	184	NO .	10
	N-Nitrosomorpholine	368	110	20
	1-Nitrosopiperidine	184		10
	N-Nitrosopyrrolidine	920		50
	5-Nitro-o-toluidine	368	SAMPLES	20
	Pentachlorobenzene	ND	ONIT LLD	ND
	Pentachloroethane	NA		NA NA
	Pentachloronitrobenzene	1840		100
	Pentachlorophenol	918	TAKEN	50
	Phenacetin	368	1 CARLO	20
	Phenanthrene	184		10
,	Phenol	184		10
	Phthalic Anhydride	ND		ND
	2-Picoline	184		10
5	Pronamide	ND		ND
	Pyrene	184		10
	Resorcinol	NA		
	Bafrete	920		NA 50
	1,2,4,5-Tetrachlorobenzene	368		20
	2,3,4,6-Tetrachlorophenol	ND		
	1,2,4-Trichtorobenzene	184		ND
	2,4,5-Trichlorophenol	918		10
	2,4,6-Trichlorophenol	184		50
	[ris(2,3-dibromopropyl) phosphate	ND		10 NO

		Untreated Waste to	Treated Waste	Scrubber
	BDAT CONSTITUENT	Incinerator (Kiln Ash)	Wastewater	
		(mg/kg)	(mg/kg)	(mg/l)
	Metals - Total Composition			
	Antimony	1.5		0.015
	Arsenic	1.0		0.010
	8arium -	0.2		0.002
	Beryllium	0.1		0.001
	Cadmium	0.5		0.005
	Chromium	0.5		0.005
	Hexavalent Chromium (mg/l)	0.01		0.010
60	Copper	0.4		0.004
51	Lead	0.5		0.005
	Mercury	0.1		0.0002
53	Nickel	11		0.009
54	Selenium	0.5		0.005
	Silver	0.7		0.005
56	Thallium	0.1		0.010
57	Vanadium	0.3		0.003
58	Zinc	0.2		0.002
	Metals - TCLP (mg/l)			
54	Antimony			
55	Arsenic			
56	Barium			
57	Beryllium	NOT		NOT
58	Cadmium			
59	Chromium		NO	
60	Copper	ANALYZED		ANALYZED
61	Lead			
	Mercury		SAMPLES	
	Nickel			
	Selenium			
	Silver		** A 1.5******	
	Thatlium		TAKEN	
	Vanadium Zinc			
	Inorganics			
69	Cyanide	•		0.01
70	Flouride	•		0.2
70 71	Sulfide	-		0.5
, 1	auti iue	-		0.3
	Other Parameters			
	Chlorides	•		1

^{(1) -} Cannot be separated from N-Nitrosodipenylamine.

NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.

 $[\]ensuremath{\mathsf{ND}}$ - Not detected, estimated detection limit has not been determined.

^{- -} Detection have not been established.

Calculation of Treatment Standards for K101 Nonwastewaters

Constituent: Acetone

	1		3*	4	
Sample Set	Kiln Ash Concentration (mg/kg)	2+ Percent Recovery	Accuracy Correction Factor	Corrected Concentration (mg/kg)	5 Log Transform
1	0.010	106	1.0	0.010	-4.605
2	0.010	106	1.0	0.010	-4.605
3	0.010	106	1.0	Q.010	-4.605
			x :	= 0.010	y = -4.605 s = 0.000

- 1 Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 5-7.
- 2 Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 6-15.
 - + Values are actually the average of all volatiles.
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
 - * Corrected concentration cannot be below the detection limit; therefore, the accuracy factor is adjusted to 1.0.
- 4 Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard = Corrected Kiln Ash Mean X VF

VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Kiln Ash Mean X VF

= 0.010 X 2.8

= 0.028 mg/kg

APPENDIX D

Calculation of Treatment Standards for K101 Nonwastewaters

Constituent: Toluene

	1		3*	4	
Sample Set	Kiln Ash Concentration (mg/kg)	Percent Recovery	Accuracy Correction Factor	Corrected Concentration (mg/kg)	5 Log Transform
1	0.005	106	1.0	0.005	-5.298
2	0.005	106	1.0	0.005	-5.298
3	0.005	106	1.0	0.005	-5.298
			х :	= 0.005	y =5.298 s = 0.000

- 1 Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 5-7.
- 2 Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 6-15.
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
 - * Corrected concentration cannot be below the detection limit; therefore, the accuracy factor is adjusted to 1.0. .
- 4 Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard = Corrected Kiln Ash Mean X VF

VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Kiln Ash Mean X VF

 $= 0.005 \times 2.8$

= 0.014 mg/kg

Calculation of Treatment Standards for K101 Nonwastewaters

Constituent: Aniline

,	1		3	4		
Sample Set	Kiln Ash Concentration (mg/kg)	2+ Percent Recovery	Accuracy Correction Factor	Corrected Concentration (mg/kg)	T	5 Log ransform
1	0.420	40	2.5	1.05		0.049
2	0.420	40	2.5	1.05		0.049
3	0.420	40	2.5	1.05		0.049
			x :	= 1.05	y =	0.049
					s =	0.000

- 1 Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 5-7.
- 2 Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 6-16.
 - + Values are actually the average of all semivolatiles.
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
- 4 Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard ≈ Corrected Kiln Ash Mean X VF

VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Kiln Ash Mean X VF

 $= 1.05 \times 2.8$

= 2.940 mg/kg

Calculation of Treatment Standards for K101 Nonwastewaters

Constituent: 2-Nitroaniline

Sample Set	Kiln Ash 1 Concentration (mg/kg)	Percent 2 Recovery	Accuracy 3 + Correction Factor	Corrected 4 Concentration (mg/kg)	Log 5 Transform
1	2.0	40	2.50	5.000	1.609
2	2.0	40	2.50	5.000	1.609
3	2.0	40	2.50	. 5.000	1.609
			x :	= 5.000 y	= 1.609
				s	= 0.000

- 1 Obtained from the Onsite Engineering Report for John Zink Company for K101, Table 5-7.
- 2 Obtained from the Onsite Engineering Report for John Zink Company for K101, Table 6-16.
 - + Values are actually the average of all semivolatiles.
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
- 4 Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard = Corrected Kiln Ash Mean X VF

VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Kiln Ash Mean X VF

= 5.000 X 2.80

= 14.000 mg/kg

APPENDIX D

Calculation of Treatment Standards for K102 Nonwastewaters

Constituent: Toluene

	1		3*	4	
Sample Set	Kiln Ash Concentration (mg/kg)	Percent Recovery	Accuracy Correction Factor	Corrected Concentration (mg/kg)	5 Log Transform
1	1.5	112	1.0	1.500	0.405
2	1.5	112	1.0	1.500	0.405
3	1.5	112	1.0	1.500	0.405
4	1.5	112	1.0	1.500	0.405
			x =	= 1.500	y = 0.405
				;	s = 0.000

- 1 Obtained from the Onsite Engineering Report, John Zink Company for K102, Table 5-7.
- 2 Obtained from the Onsite Engineering Report, John Zink Company for K102, Table 6-15.
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
 - * Corrected concentration cannot be below the detection limit; therefore, the accuracy factor is adjusted to 1.0.
- 4 Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard = Corrected Kiln Ash Mean X VF

VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Kiln Ash Mean X VF

 $= 1.500 \times 2.8$

= 4.200 mg/kg

APPENDIX D

Calculation of Treatment Standards for K102 Nonwastewaters

Constituent: Total Xylenes

	1		3*	4	
Sample Set	Kiln Ash Concentration (mg/kg)	2+ Percent Recovery	Accuracy Correction Factor	Corrected Concentration (mg/kg)	5 Log Transform
1	1.5	112	1.0	1.500	0.405
2	1.5	112	1.0	1.500	0.405
3	1.5	112	1.0	1.500	0.405
4	1.5	112	1.0	1.500	0.405
			x :		y = 0.405 s = 0.000

- 1 Obtained from the Onsite Engineering Report, John Zinc Company for K102, Table 5-7.
- 2 Obtained from the Onsite Engineering Report, John Zinc Company for K102, Table 6-15.
 - + Values are actually the average of all volatiles.
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
 - * Corrected concentration cannot be below the detection limit; therefore, the accuracy factor is adjusted to 1.0.
- 4 Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard = Corrected Kiln Ash Mean X VF

VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Kiln Ash Mean X VF

= 1.500 X 2.8

= 4.200 mg/kg

Calculation of Treatment Standards for K102 Nonwastewaters

Constituent: 2-Nitrophenol

Sample Set	Kiln Ash 1 Concentration (mg/kg)	Percent :	Accuracy 3 2+ Correction Factor	Corrected 4 Concentration (mg/kg)	Log 5 Transform
1	1.0	21	4.76	4.760	1.560
2	1.0	21	4.76	4.760	1.560
3	1.0	21	4.76	4.760	1.560
4	1.0	21	4.76	4.760	1.560
			x :	= 4.760 y	= 1.560
				s	= 0.000

^{1 -} Obtained from the Onsite Engineering Report for John Zink Company for K102, Table 5-3 through 5-6.

- 2 Obtained from the Onsite Engineering Report for John Zink Company for K102, Table 6-16.
 - + Values are actually the value for the isomer 4-Nitrophenol.
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
- 4 Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, in, of the Corrected Concentration.

Treatment Standard = Corrected Kiln Ash Mean X VF

VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Kiln Ash Mean X VF

= 4.760 X 2.80

= 13.328 mg/kg

APPENDIX D

Calculation of Treatment Standards for K102 Nonwastewaters

Constituent: Phenol

	1		3	4	
Sample Set	Kiln Ash Concentration (mg/kg)	Percent Recovery	Accuracy Correction Factor	Corrected Concentration (mg/kg)	5 Log Transform
1	1.0	61	1.64	1.640	0.495
2	1.0	61	1.64	1.640	0.495
3	1.0	61	1.64	1.640	0.495
4	1.0	61	1.64	1.640	0.495
			x :	= 1.640	y = 0.495
					s = 0.000

- 1 Obtained from the Onsite Engineering Report, John Zinc Company, Table 5-7.
- 2 Obtained from the Onsite Engineering Report, John Zinc Company, Table 6-16.
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
- 4 Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard = Corrected Kiln Ash Mean X VF

VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Effluent Mean X VF

 $= 1.640 \times 2.8$

= 4.592 mg/kg

Calculation of Treatment Standards for K101 Wastewaters

Constituent: 2-Nitroaniline

Sample Set	Effluent Concentration (mg/l)	1 Percent Recovery	Accuracy 3 2+ Correction Factor	Corrected Concentration (mg/l)	4 Log 5 Transform
1	0.050	53	1.89	0.095	-2.354
2	0.050	53	1.89	0.095	-2.354
3	0.050	53	1.89	0.095	-2.354
4	0.050	53	1.89	0.095	-2.354
			x :		y = -2.354 s = 0.000

^{1 -} Obtained from the Onsite Engineering Report for John Zink Company, Tables 5-3 to 5-6.

Treatment Standard = Corrected Effluent Mean X VF VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Effluent Mean X VF

 $= 0.095 \times 2.8$

= 0.266 mg/l

^{2 -} Obtained from the Onsite Engineering Report for John Zink Company, Table 6-19.

^{+ -} Values are actually the average of all semivolatiles.

^{3 -} Accuracy Correction Factor = 100 / Percent Recovery.

^{4 -} Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.

^{5 -} Log Transform using the natural logarithm, ln, of the Corrected Concentration.

APPENDIX D Calculation of Treatment Standards for K102 Wastewaters

Constituent: 2-Nitrophenol

Sample Set	Effluent Concentration (mg/l)	Percent 2	Accuracy 3* 2+ Correction Factor	Corrected Concentration (mg/l)	4 Log 5 Transform
1	0.010	113	1.0	0.010	-4.605
2	0.010	113	1.0	0.010	-4.605
3	0.010	113	1.0	0.010	-4.605
4	0.010	113	1.0	0.010	-4.605
5	0.010	113	1.0	0.010	-4.605
6	0.010	113	1.0	0.010	-4.605
			х =	= 0.010	y = -4.605 s = 0

^{1 -} Obtained from the Onsite Engineering Report for John Zink Company, Tables 5-3 to 5-8.

Treatment Standard = Corrected Effluent Mean X VF VF = 2.8 (as explained in Appendix A)

Treatment Standard = Corrected Effluent Mean X VF

 $= 0.010 \times 2.80$

= 0.028 mg/l

^{2 -} Obtained from the Onsite Engineering Report for John Zink Company, Table 6-19.

^{+ -} Values are actually for the isomer 4-nitrophenol.

^{3 -} Accuracy Correction Factor = 100 / Percent Recovery.

^{* -} Corrected concentration cannot be below the detection limit; therefore, the accuracy factor is adjusted to 1.0.

^{4 -} Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.

^{5 -} Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Calculation of Treatment Standards for K101 and K102 Wastewaters

Constituent: Arsenic

Sample Set	Effluent Concentration (mg/l)	1 Percent Recovery	Accuracy 3 2 Correction Factor	Corrected 4 Concentration (mg/l)	Log 5 Transform
1	0.415	143	0.70	0.291	-1.234
2	2.000	143	0.70	1.400	0.336
3	0.513	143	0.70	0.359	-1.024
4	0.418	143	0.70	0.293	-1.228
5	0.440	143	0.70	0.308	-1.178
			x	= 0.530 y	= -0.866 = 0.677

- 1 Obtained from the Onsite Engineering Report for D004, Table 5-15
- 2 Obtained from the Onsite Engineering Report for D004, Table 6-14
- 3 Accuracy Cogrection Factor = 100 / Percent Recovery.
- 4 Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, \ln , of the Corrected Concentration.

Treatment Standard = Corrected Effluent Mean X VF

Calculation of Variability Factor (VF):

$$C_{00} = \exp(y + 2.33s)$$

where y = the mean of the log transforms s = the standard deviation of the log transforms.

Therefore,
$$C_{99} = \exp(-0.866 + 2.33(0.677))$$

= $\exp(0.711)$
= 2.036

and VF =
$$C_{99}$$
 / x

where x = the mean of the corrected effluent concentrations.

Therefore, VF =
$$C_{99}$$
 / x
= 2.036 / 0.530
= 3.842

ట

Calculation of Treatment Standards for K101 and K102 Wastewaters

Constituent: Cadmium

Sample Set	Effluent Concentration (mg/l)	Percent 2 Recovery	Accuracy 3 Correction Factor	Corrected 4 Concentration (mg/l)	Log 5 Transform
1	0.080	94	1.06	0.085	-2.465
2	0.080	94	1.06	0.085	-2.465
3	0.080	94	1.06	0.085	-2.465
4	0.080	94	1.06	0.085	-2.465
5	0.080	94	1.06	0.085	-2.465
			x :	•	= -2.465 = 0.000

- 1 Obtained from the Onsite Engineering Report for D004, Table 5-15
- 2 Obtained from the Onsite Engineering Report for D004, Table 6-14
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
- 4 Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard = Corrected Effluent Mean X VF

Calculation of Variability Factor (VF):

$$C_{99} = \exp(y + 2.33s)$$

where y = the mean of the log transforms s = the standard deviation of the log transforms.

Therefore,
$$C_{99} = \exp(-2.465 + 2.33(0.0))$$

= $\exp(-2.465)$
= 0.085

and VF = C_{99} / x where x = the mean of the corrected effluent concentrations.

Therefore, VF =
$$C_{00}$$
 / x
= 0.085 / 0.085
= 1.0

A variability factor of one was not used in calculating the treatment standards. The variability factor of 2.80 was substituted for the value 1.

Treatment Standard = Corrected Effluent Mean X VF = 0.085 X 2.80 = 0.238 mg/l

Calculation of Treatment Standards for K101 and K102 Wastewaters

Constituent: Lead

Sample Set	Effluent Concentration (mg/l)	1 Percent 2 Recovery	Accuracy 3 Correction Factor	Corrected 4 Concentration (mg/l)	Log 5 Transform
1	0.005	84	1.19	0.006	-5.116
2	0.029	84	1.19	0.035	-3.352
3	0.025	84	1.19	0.030	-3.507
4	0.010	84	1.19	0.012	-4.423
5	0.025	84	1.19	0.030	-3.507
			x :	= 0.023 y	

- 1 Obtained from the Onsite Engineering Report for D004, Table 5-15
- 2 Obtained from the Onsite Engineering Report for D004, Table 6-14
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
- 4 Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard = Corrected Effluent Mean X VF

Calculation of Variability Factor (VF):

$$C_{99} = \exp(y + 2.33s)$$

where y = the mean of the log transforms

s = the standard deviation of the log transforms.

Therefore,
$$C_{99} = \exp(-3.981 + 2.33(0.763))$$

= $\exp(-2.203)$
= 0.110

and VF = C_{99} / x where x = the mean of the corrected effluent concentrations.

Therefore, VF =
$$C_{99}$$
 / x
= 0.110 / 0.023
= 4.783

Treatment Standard = Corrected Effluent Mean X VF = 0.023 X 4.783

= 0.110 mg/l

Calculation of Treatment Standards for K101 and K102 Wastewaters

Constituent: Mercury

Sample Set	Effluent Concentration (mg/l)	1 Percent 2 Recovery	Accuracy 3 Correction Factor	Corrected 4 Concentration (mg/l)	Log 5 Transform
1	0.001	95	1.05	0.001	-6.908
2	0.004	95	1.05	0.004	-5.521
3	0.009	95	1.05	0.009	-4.711
4	0.004	95	1.05	0.004	-5.521
5	0.006	95	1.05	0.006	-5.116
			x :	= 0.005 y	

- 1 Obtained from the Onsite Engineering Report for D004, Table 5-15
- 2 Obtained from the Onsite Engineering Report for D004, Table 6-14
- 3 Accuracy Correction Factor = 100 / Percent Recovery.
- 4 Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
- 5 Log Transform using the natural logarithm, ln, of the Corrected Concentration.

Treatment Standard = Corrected Effluent Mean X VF

Calculation of Variability Factor (VF):

$$C_{99} = \exp(y + 2.33s)$$

where y = the mean of the log transforms

s = the standard deviation of the log transforms.

Therefore,
$$C_{99} = \exp(-5.555 + 2.33(0.827))$$

= $\exp(-3.628)$
= 0.027

and VF =
$$C_{99}$$
 / x

where x = the mean of the corrected effluent concentrations.

Therefore, VF =
$$C_{99}$$
 / x
= 0.027 / 0.005
= 5.400

APPENDIX E

THERMAL CONDUCTIVITY

The comparative method of measuring thermal conductivity has been proposed as an ASTM test method under the name "Guarded, Comparative, Longitudinal Heat Flow Technique". A thermal heat flow circuit is used which is the analog of an electrical circuit with resistances in series. A reference material is chosen to have a thermal conductivity close to that estimated for the sample. Reference standards (also known as heat meters) having the same cross-sectional dimensions as the sample are placed above and below the sample. An upper heater, a lower heater, and a heat sink are added to the "stack" to complete the heat flow circuit. See Figure 1.

The temperature gradients (analogous to potential differences) along the stack are measured with type K (chromel/alumel) thermocouples placed at known separations. The thermocouples are placed into holes or grooves in the references and also in the sample whenever the sample is thick enough to accommodate them.

For molten samples, pastes, greases, and other materials that must be contained, the material is placed into a cell consisting of a top and bottom of Pyrex 7740 and a containment ring of marinite. The sample is 2 inch in diameter and .5 inch

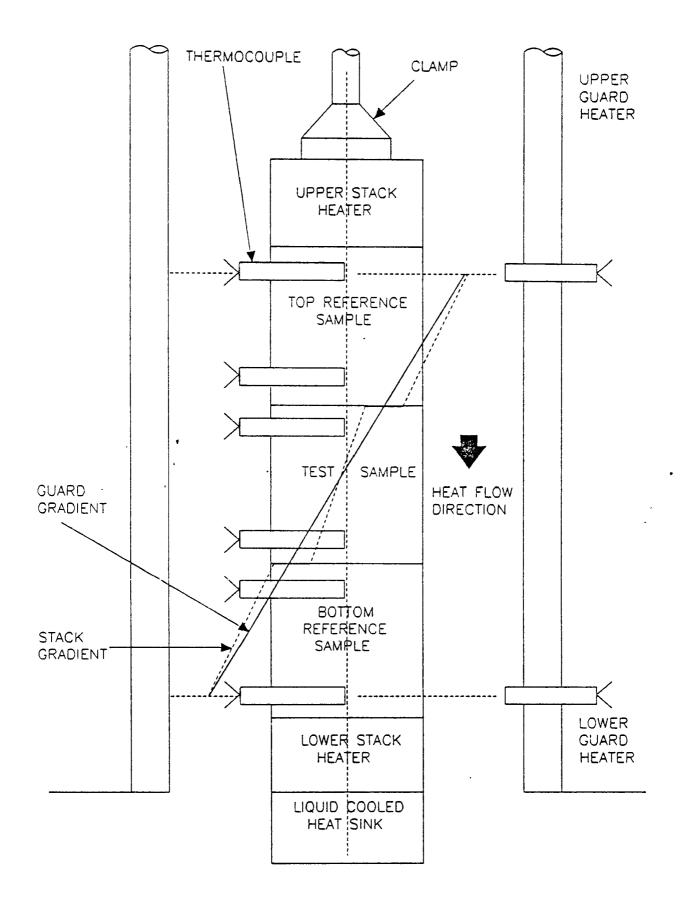


FIGURE 1 SCHEMATIC DIAGRAM OF THE COMPARATIVE METHOD

thick. Thermocouples are not placed into the sample but rather the temperatures measured in the Pyrex are extrapolated to give the temperature at the top and bottom surfaces of the sample material. The Pyrex disks also serve as the thermal conductivity reference material.

The stack is clamped with a reproducible load to insure intimate contact between the components. In order to produce a linear flow of heat down the stack and reduce the amount of heat that flows radially, a guard tube is placed around the stack and the intervening space is filled with insulating grains or powder. The temperature gradient in the guard is matched to that in the stack to further reduce radial heat flow.

The comparative method is a steady state method of measuring thermal conductivity. When equilibrium is reached, the first flux (analogous to current flow) down the stack can be determined from the references. The heat into the sample is given by

$$Q_{in} = \lambda_{top}(dT/dx)_{top}$$

and the heat out of the sample is given by

$$Q_{\text{out}} = \lambda_{\text{bottom}} (dT/dx)_{\text{bottom}}$$

where

$$\lambda$$
 = thermal conductivity

dT/dx = temperature gradient

and top refers to the upper reference while bottom refers to the lower reference. If the heat was confined to flow just down the stack, then $Q_{\rm in}$ and $Q_{\rm out}$ would be equal. If $Q_{\rm in}$ and $Q_{\rm out}$ are in reasonable agreement, the average heat flow is calculated from

$$Q = (Q_{in} + Q_{out})/2$$

The sample thermal conductivity is then found from

$$\lambda$$
 sample = Q/(dT/dx) sample

The result for the K102 Activated Charcoal Waste tested is given in Table 1. The sample was held at an average temperature of 42°C with a 53°C temperature drop across the sample for approximately 20 hours before the temperature profile became steady and the conductivity measured. At the conclusion of the test, it appeared that some "drying" of the sample had occurred.

The result for the K101 waste tested is given in Table 1.

The sample was held at an average temperature of 39°C with a 39°C temperature drop across the sample for approximately 4 hours

Appendix E - 4

before the temperature profile became steady and the conductivity measured. At the conclusion of the test, it appeared that some "drying" of the sample had occurred. Bubbles had formed in the sample and migrated to the top of the sample in contact with the upper reference. Approximately 15% of the upper Pyrex reference was not in contact with the sample when thermal equilibrium was reached. Thus, the conductivity given in Table 1 may be low by 5 to 10%.

TABLE 1

THE RESULTS OF THE MEAUREMENT OF THE THERMAL CONDUCTIVITY USING THE COMPARATIVE METHOD

Sample	Temperature	Thermal Conductivity
	(°C)	(W/mK)*
K101 Waste	39	.273
K102 Activated Charcoal Waste	42	.136

^{*1} W/mK = 6.933 BTU in/h ft 2 °F = .5778 BTU/h ft °F

Appendix F

. Continuous Emissions Monitoring Report and

Strip Charts for Engineering Site Visit

Results of Arsenic Emissions Sampling and Continuous Emissions Monitoring for K101 and K102 Waste Incineration At John Zink Company, Tulsa, OK

Prepared By:

Darrell Doerle, Scientist Process Engineering FEB 1 1 1988

FEB 1 1 1988

Jacobs Engineering Group

Radian Corporation P.O. Box 13000 Research Triangle Park, NC 27709

February 5, 1988

Arsenic Emissions Sampling and Continuous Emissions Monitoring At John Zink

1	.0	INTRODUCTION
Ŧ		THIVODOCITON

- 2.0 ARSENIC EMISSIONS SAMPLING
- 3.0 SAMPLE ANALYSIS
- 4.0 ARSENIC SAMPLING RESULTS
- 5.0 CONTINUOUS EMISSIONS MONITORING

APPENDIX: TEST SUMMARIES AND RAW DATA FROM ARSENIC SAMPLING

1.0 INTRODUCTION

Radian Corporation was contracted by Versar, Inc. to provide arsenic emissions sampling and continuous emissions monitoring at the John Zink Company's Tulsa, Oklahoma facility during the week of December 1, 1987. This work was performed in association with the EPA's program to develop treatment standards for wastes subject to land disposal restrictions. Radian Corporation's sampling efforts were conducted under the direction of Darrell Doerle and coordinated with the project manager, Mr. Robert Morton, of the Jacobs Engineering Group, Inc. The purpose of the emissions sampling was to monitor arsenic emissions created by incineration of the arsenic containing hazardous waste K102. The continuous emissions monitoring provided documentation of CO, CO $_2$, O $_2$, and total hydrocarbon emissions from the afterburner during incineration of wastes K102 and K101. The following is a brief discussion of the sampling and analytical procedures used as well as presentation of the results.

2.0 ARSENIC EMISSIONS SAMPLING

Three flue gas (emissions) samples were taken during the incineration of waste K102 for the determination of arsenic emissions. Total arsenic emissions are reported in the form of arsenic trioxide at the request of the State of Oklahoma. Samples were taken in accordance with protocols delineated in EPA Method 108 (Code of Federal Regulations Part 61, Appendix B).

Pallflex filters (type 2500 QAT-UP) were used for particulate phase collection of arsenic. These filters were selected for their low metals content as well as applicability to EPA Method 5 particulate sampling. Filter temperature was maintained at $248^{\circ} \pm 25^{\circ}$ F for all samples. An effort was made to keep filter temperatures at the hotter end of the allowable range due to the low stack temperature and high moisture content. Figure 1-1 illustrates the sampling train that was used.

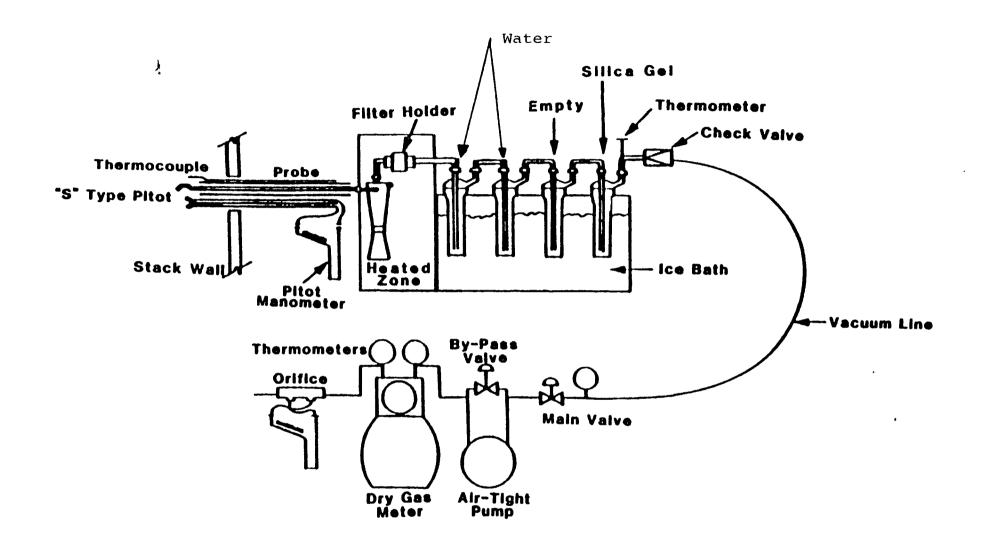


Figure 1-1 Components of the EPA Method 108 sampling train

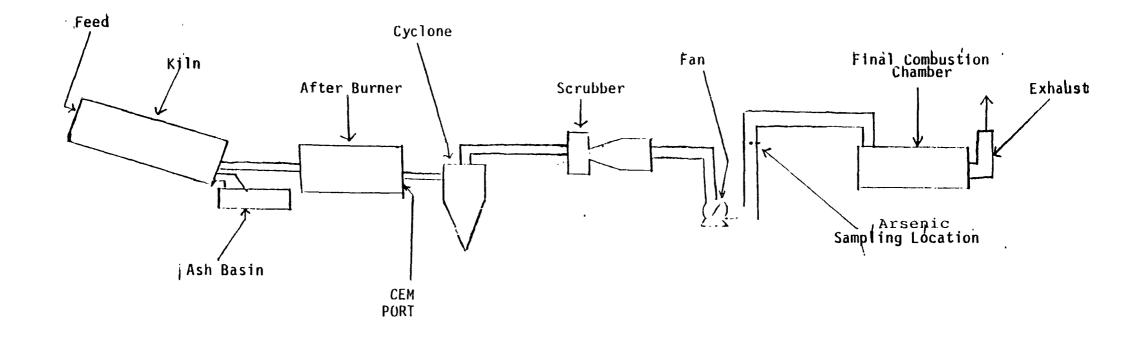
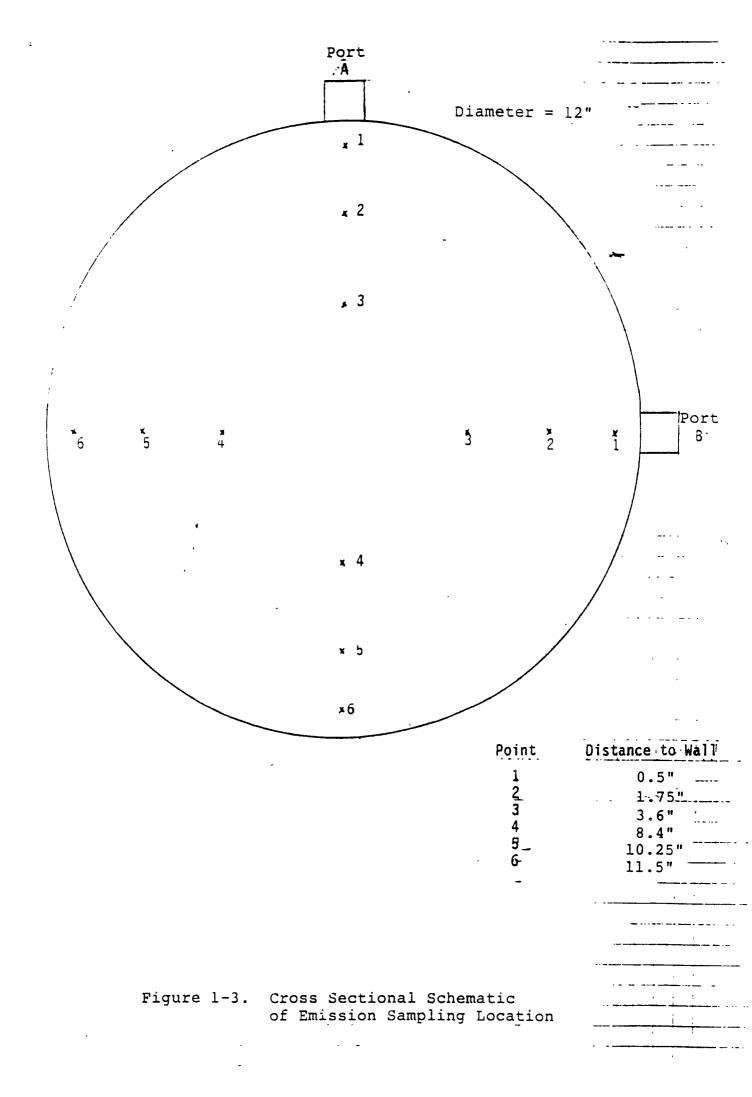


Figure 1-2. Gas Flow Schematic

Samples were taken in a twelve inch vertical duct located approximately 30 feet downstream of the scrubber outlet and 12 feet upstream of the final combustion chamber (Figure 1-2). Access to the gas stream was through two three inch ports set at 90° to each other and located eight feet downstream, three feet upstream from the nearest gas flow disturbance. Six points were sampled per port for five minutes each (60 minute test) for each of the three emissions samples that were collected. A schematic of the test matrix is shown in Figure 1-3.

At the beginning of the incineration test burn, there was a three hour supply of K102 waste for incinerator feed. In order to allow for time between collection of emissions samples and possible sampling problems, collection of the second sample was started halfway through collection of the first sample (at the port change). Collection of the third emission sample began following completion of the second sample.


After sample collection the sampling train impingers were weighed for gravimetric moisture determination. The trains were then recovered in the following three components:

- 1) 0.1N NaOH rinses of probe, nozzle, and front half glassware;
- 2) filter;
- 3) back half impinger catch and 0.1N NaOH rinses of back half glassware.

Recovery containers were sealed, labeled, and logged into a master sample log book.

3.0 SAMPLE ANALYSIS

Samples to be analyzed for arsenic were taken to Carla Lance of National Analytical Laboratories (NAL) in Tulsa, Oklahoma. Due to the high amount of arsenic found in the samples, NAL performed inductively coupled argon plasma spectroscopy (ICAP) to provide higher resolution over a wider range of concentrations than would be possible by atomic absorption

spectroscopy. Prior to analysis front half fractions were combined into one fraction, as were back half fractions. Analysis was then performed to determine total front half arsenic and total back half arsenic for each of the three samples collected.

4.0 ARSENIC SAMPLING RESULTS

The results of the arsenic testing can be found in Table 3-1. Complete test summaries and the raw data are found in the appendix. In calculating arsenic trioxide emissions from total arsenic emissions, it was assumed all arsenic was oxidized to $\operatorname{As}_2\operatorname{O}_3$ in the final combustion chamber. As shown in the table, the arsenic trioxide emission rate ranged from 0.0067 to 0.0139 kg/hr. The following two factors may have contributed to the apparent rise in arsenic emissions rates over time:

- 1) Feed of K102 waste to the incinerator began approximately 20 minutes after the stack samplers were instructed to begin collection of the first arsenic emissions sample; however, the emission rates were calculated based on the total time period for arsenic sample collection;
- 2) Scrubber water was recycled without addition of make-up water during the entire emission sampling period for K102 waste.

5.0 CONTINUOUS EMISSIONS MONITORING

Continuous emission monitoring was performed at the afterburner outlet location for O_2 , CO_2 , CO_3 , and total hydrocarbons (THC). The sampling location is shown on Figure 1-2. The continuous monitoring was performed for the duration of the test burns of K102 waste and K101 waste. The primary intent of continuous monitoring was to: 1) observe fluctuations in flue gas parameters, and 2) provide documentation of combustion conditions.

Sample acquisition was accomplished using an in-stack ceramic probe filtered with an out-of-stack Balstron filter. The sample was transported to the mobile laboratory using a heated Teflon sample line, maintained at a temperature >120 $^{\circ}$ C. Flue gas analyzed for O_2 , CO_2 , and CO was first pumped through a sample conditioner to knock out moisture, providing analysis on a dry basis. A separate, unconditioned gas sample was supplied to the THC analyzer for wet basis analysis. The concentrations were continuously recorded on stripcharts.

The following instruments were used to analyze for CO, ${\rm CO_2}, {\rm O_2},$ and THC:

Carbon Monoxide (CO)

Beckman Model 865

Concentration

Infrared Analyzer;

Range 0-500 ppm

Carbon Dioxide (CO₂)

Beckman Model 865

Concentration

Infrared Analyzer;

Range 0-20%

Oxygen (0₂) Thermox
Concentration WDG AMETEK;
Range 0-25%

Total Hydrocarbon (THC)

Concentration

Beckman Model 402

Flame Ionization Detector

Range 0-100 ppm

Copies of all continuous emission data were given to the EPA work assignment manager, Mr. Juan Baez-Martinez, prior to leaving the test site.

TABLE 3-1. SUMMARY OF RESULTS OF ARSENIC EMISSIONS SAMPLING

						Arsenic		senic
Sample	% 0 ₂	% H ₂ 0	ACFM F1	OW DSCFM	Total / #/hr	Arsenic kg/hr	As #/hr	ssions AS ₂ O ₃ kg/hr
1	6.1	53.7	1686	630	.0111	.0050	.0147	.0067
2	6.1	56.0	1736	615	.0181	.0082	.0239	.0108
3	5.7	55.5	1695	060	.0231	.0105	.0305	.0139

APPENDIX

RADIAN SOURCE TEST EPA METHOD 2-5* (RAW DATA)

FLANT : JOHN ZINK
PLANT SITE : TULSA , OK

SAMPLING LOCATION : SCRUBBER OUTLET TEST # : BDAT-JZ-1201-AS-01

DATE : 12/01/87 TEST PERIOD : 1725-1830

PARAMETER	VALUE
400 dall dall day (sep upo upo upo upo upo	
Sampling time (min.)	60
Barometric Pressure (in.Hg)	29.57
Sampling nozzle diameter (in.)	
Meter Volume (cu.ft.)	36.337
Meter Pressure (in.H2O)	1.225
Meter Temperature (F)	74.83335
Stack dimension (sq.in.)	113.0976
Stack Static Pressure (in.H20)	1 - 4
biack Moisture Collected (gm)	878.Z
Absolute stack pressure(in Hg)	29.57294
Average stack temperature (F)	189.0833
Percent CO2	8.5
Percent 02	5.1
Percent N2.	85.4
Delps Subroutine result	13.12519
DGM Factor	1.0051
Pitot Constant	.84

^{*} Although Method 108 was used for arsenic sampling, EPA Methods 2-5 were used to calculate gas flow and emission rates as shown in the sample calculations to follow.

RADIAN SOURCE TEST EPA METHODS 2-5 FINAL RESULTS

PLANT : JOHN ZINK PLANT SITE : TULSA , OK

SAMPLING LOCATION : SCRUBBER DUTLET
TEST # : BDAT-JZ-1201-AS-01
DATE : 12/01/87

DAFE : 12/01/87 FEST PERIOD : 1725-1830

PARAMETER	RESULT
Vm(dscf)	35.74246
Vm(dscm)	1.012226
Vw gas(sct)	41.40713
Vw gas (scm)	1.17265
% maisture	53.67123
Md	.4632877
MWd	29.504
MM	15.5/ 5 99
Vs(fpm)	2147.268
Vs (mpm)	654.655
Flow(acfm)	1686.464
Flow(acmm)	47.76067
Flow(dscfm)	630.3191
Flow(dscmm)	17.85064
% 1	96.31988
% EA	37.09199

Frogram Revision:1/16/84

RADIAN SOURCE TEST EPA METHOD 5

PARTICULATE LOADING

PLANT : JOHN ZINK
PLANT SITE : TULSA , OK

SAMPLING LOCATION : SCRUBBER OUTLET TEST # : BDAT-JZ-1201-AS-01

DATE : 12/01/87 TEST PERIOD : 1725-1830

PARAMETER	FRONT-HALF	TRAIN FOTAL (As)	A3.03
tions come came and delet delet delet delet			-2 2
Total Casa	AT A SATISMENT OF THE S	A AAAATEBA	
Total Grams	0.0041800	0.0047580	
Grams/dsc+	0.0001169	0.0001331	
Grams/acf	0.0000437	0.0000498	
Grains/dscf	0.0018045	0.0020540	
Grains/act	0.0006744	0.000 <i>7677</i>	
Grams/dscm	0.0041294	0.0047004	
⊖raus/Acm	0.0015434	0.00175 48	
Founds/asc+	<u>0.000000</u> %	0.000003	
Pounds/act	0.0000001	0.0000001	
Hounds/Hr	0.0097524	0.0111010	.0147
Filograms/Hr	0.0044237	0.0050354	
			.0067

Program Revision:1/16/84

RADIAN SOURCE TEST EFA METHOD 2-5 (RAW DATA)

PLANT : JOHN ZINK
PLANT SITE : TULSA . OK

SAMPLING LOCATION : SCRUBBER OUTLET TEST # : BDAT-JZ-1201-AS-02

DATE : 12/01/87 TEST PERIOD : 1802-1905

FARAMETER	VALUE
	
Sampling time (min.)	60
Barometric Fressure (in.Hg)	29.57
Sampling nozzle diameter (in.)	.375
Meter Volume (cu.+t.)	27
Meter Pressure (in.H20)	1.375
Meter Temperature (f)	81.95855
Stack dimension (sq.:n.)	113.0006
Stack Static Pressure (in.H2O)	1.4
Stack Moisture Collected (gm)	9 68. 9
Absolute stack pressure(in Hg)	29.67294
Average stack lemperature (F)	191.25
Percent CO2	·8.5
Percent O2	6. 1
Percent N2	85.4
Delps Subroutine result	13.43468
DGM Factor	1.0056
Pitot Constant	.84

RADIAN SOURCE TEST EPA METHODS 2-5 FINAL RESULTS

FLANT : JOHN ZINK FLANT SITE

PLANT SITE : FULSA , OK SAMPLING LOCATION : SCRUBBER OUTLET TEST # : BDAT-JZ-1201-AS-02

: 12/01/87 DATE TEST PERIOD : 1802-1905

PARAMETER	RESULT
Vm(dscf)	35.94737
Vm(dscm)	1.018029
Vw gas(sc+)	45.68364
Vw gas (scm)	1.293761
% moisture	55.96356
Md	.4403642
MWd	<u> </u>
MM	23.10999
Vs(+pm)	2210.513
Vs (mpm)	573 . 9359
Flow(ac+m)	1736.137
Flow(acmm)	49.1674
Flow(dscfm)	614.7254
Flow(dscmm)	17.40902
1 %	9 9. 85988
% EA	37.09199

Program Revision:1/16/84

RADIAN SOURCE TEST EPA METHOD 5

PARTICULATE LOADING

PLANT : JOHN ZINK PLANT SITE : rulsa , ok

SAMPLING LOCATION : SCRUBBER DUTLET : BDAT-JZ-1201-AS-02 TEST #

: 12/01/87 DATE TEST PERIOD : 1802-1905

PARAMETER	FRONT-HALF	TRAIN TOTAL (45)	(As. 03)
			~
Total Grams	0.0073000	0.0079850	
Grams/dscf	0.0002031	0.0002221	
Grams/act	0.0000719	0.0000787	
Grains/dscf	0.0031334	0.0034275	
Grains/act	0.0011095	0.0012136	
Grams/dscm	0.007170a	0.0078404	
Grams/acm	0.0025389	0.0027771	
Paunds/dscf	Q_(0)0000#	0.0000005	
Founds/ac+	0.0000002	0.0000002	
Paunds/Hr	0.0165157	0.0180635	,0239
kilograms/Hr	0.0074915	0.00 81 944	8010
•			• = •

Program Revision:1/16/84

RADIAN SOURCE TEST EPA METHOD 2-5 (RAW DATA)

PLANT : JOHN ZINK PLANT SITE : TULSA , OK
SAMPLING LOCATION : SCRUBBER OUTLET

TEST # : BDAT-JZ-1201-AS-03

DATE : 12/01/87 TEST PERIOD : 1920-2024

:

PARAMETER	VALUE
Sampling time (min.) Barometric Fressure (in.Hg) Sampling nozzle diameter (in.) Meter Volume (cu.ft.) Meter Fressure (in.H20)	60 29.57 .376 35.998 1.220833
Meter Temperature (F) Stack dimension (sq.in.) Stack Static Pressure (in.HzU) Stack Moisture Lollected (gm) Absolute stack pressure(in Hg)	71.70835 113.0976 1.3 942.8
Average stack Lemperature (F) Percent CO2 Percent O2 Percent N2	
Delps Subroutine result DGM Factor Pitot Constant	13.16211 1.0051 .84

RADIAN SOURCE TEST EFA METHODS 2-5 FINAL RESULTS

PLANT SITE : JOHN ZINK
PLANT SITE : TULSA , OK
SAMPLING LOCATION : SCRUBBER OUTLET

SAMPLING LOCATION : SCRUBBER OUTLET
TEST # : BDAT-JZ-1201-AS-03

DATE : 12/01/87 TEST PERIOD : 1920-2024

PARAMETER	RESULT
Vm(dscf)	35.51675
Vm(dscm)	1.008565
Vw gas(sc+)	44.45302
Vw gas (scm)	1.25891
% moisture	55.31786
Md	.4448215
MWd	29.076
11W	20.2827
Vs(+pm)	2157.885
Vs (mpm)	657.8918
Flow(acfm)	1694.603
Flow(acmm)	47.99681
Flow(dscfm)	506 . 4793
Flow(dscmm)	17.17549
% T	99.75398
% EA	34.59577

Program Revision:1/16/84

RADIAN SOURCE TEST EPA METHOD 5 PARTICULATE LOADING

PLANT : JOHN ZINK PLANT SITE : TULSA , OK

SAMPLING LOCATION : SCRUBBER OUTLET
TEST # : BDAT-JZ-1201-AS-03

DATE : 12/01/87 TEST PERIOD : 1920-2024

PARAMETER	FRONT-HALF	rrain total(As)	(1,0)
	with faith days river days date with such that which		(15203)
Total Grams	0.0085000	0.0102700	
Grams/dscf	0.0002387	0.0002883	
Grams/acf	0.0000854	0.0001032	
Grains/dscf	0.0036824	0.0044492	
Grains/act	0.0013177	0.0015921	
Grams/dscm	0.0084258	0.0101818	
Grams/acm	0.0050155	0.0 0364 34	
Pounds/dscf	0.0000005	0.0000006	
Pounds/acf	0.000002	0.0000002	
Paunds/Hr	0.0191488	0.0231362	,0305
Kilograms/Hr	. 0.0084858	0.0104945	_
			.OI 39

Program Revision: 1/16/24

RADIAN SOURCE TEST EFA METHOD 2-5 SAMPLE CALCULATION

PLANT : JOHN ZINK
PLANT SITE : TULSA , OK
SAMPLING LOCATION : SCRUBBER OUTLET TEST # : BDAT-JZ-1201-AS-03

DATE : 12/01/87 TEST PERIOD : 1920-2024

1) Volume of dry gas sampled at standard conditions (68 deg-F .29.92 in. Hg).

/m(std) = 35.617dscf

Volume of water vapor at standard conditions:

$$Vw(gas) = 0.04715 cf/gm × W(1) gm$$

$$Vw(gas) = 0.04715 \times 942.8^{\circ} = 44.453 scf$$

3) Percent Moisture in stack gas :

4) Mole fraction of dry stack gas :

SAMPLE CALCULATION PAGE TWO

```
5) Average Molecular Weight of DRY stack gas:

MWd = (.44 × %CO2) + (.32 × %O2) + (.28 × %N2)

MWd = (.44 × 10.3 ) + (.32 × 5.7 ) + (.28 × 84 ) = 29.876

6) Average Molecular Weight of wet stack gas:

MW = MWd x Md + 18(1 - Md)

AW = 29.876 x .4448215 + 18(1 - .4448245) = 13.2827

A stack gas velocity in Feet-per-minute (rpm) at stack conditions:

As = EpxCp x (SQRT (dP))(Cave) x SQRT (Ts tavg)] x SQRT (1/(PsxMW)) x squec/min Vs = 85.44 x .84 x $\phi 0 x | 13.16211 x SQRT[1/( 29.66559 | x | 23.2827 )]

Vs = 2157.885 FPM

8) Average stack gas dry volumetric flow rate (DSCFM):

Usd = \frac{Vs x As x Md x T(std) x Ps}{144 cu.in./cu.ft. x (Ts +460) x P(std)}

2157.885 x 113.0976 x .4448215 x 528x 29.66559
```

üsd =

144 x 650.75 x 29.92

 $Qsd = 606.4793 \, dscfm$

```
Isokinetic sampling rate (%):
                                       Dimensional Constant C = K4 \times 144 \times [1/(pI/4)]
                                       k4 = .0945 For English Units
                                        I\% = \frac{C \times Vm(std) \times (Ts + 460)}{Vs \times Tt \times Ps \times Md \times (Dn)}
                                                                      \frac{1039.574 \times 35.61675 \times 650.75}{2157.885 \times 60 \times 29.66559 \times .4448215 \times ( .376) 2}
                                        I% =
                                        I\% = 99.75398
 Excess air (%):
                                                                                  100 x %02 100 x 5.7
(.264 x %N2) - %02 (.264 x 84) - 5.7
                                        EA =
                                        EA = 34.60
Particulate concentration:
                                      Cs = (grams As)./Vm(std) = .01027/35.61675
                                      Cs = 0.0002883 Grams/DSCF
                                                                                  T(std) x Md x Ps x Cs
P(std) x Ts
                                      Ca =
                                                                                 528 x .4448215 x 29.66559 x 0.0002883
29.92 x 650.75
                                      Ca = 0.0001032 Grams/ACF
                                      16 \text{ As/hr} = \text{Cs } \times 0.002205 \times \text{Qsd} \times 60
                                      16 \text{ As/hr} = 0.002883 \times 0.002205 \times 606.5 \times 60
                                      16 \text{ As/hr} = .0231362
16 \text{ As}_2 \text{ }_3 = \frac{16 \text{ As}}{\text{hr}} \times \frac{16 \text{ mole As}}{16 \text{ As}} \times \frac{16 \text{ mole As}}{2 \text{ } 16 \text{ mole As}} \times \frac{16 \text{ As}}{16 \text{ mole As}} \times \frac{0}{16 \text{ mole As}} \times \frac{16 \text{ As}}{16 \text{ mole As}} \times \frac{0}{16 \text{ mole As}} \times \frac{
```

 $16 \text{ As}_2 0_3 = \frac{0.0231362 \times 197.84}{74.92 \times 2}$

 $16 \text{ As}_2 0_3 = 0.0305$

RADIAN SOURCE TEST EFA METHODS 2-5 DEFINITION OF TERMS

PARAMETER	DEFINITION
Tt(min.) Dn(in.) Ps(in.H2O) Vm(cu.ft.) Vw(gm.) Pm(in.H2O) Tm(F) Pb(in.Hg.) % COC % UC % U	TOTAL SAMPLING TIME SAMPLING NOZZLE DIAMETER ABSOLUTE STACK STATIC GAS PRESSURE ABSOLUTE VOLUME OF GAS SAMPLE MEASURED BY DGM TOTAL STACK MOISTURE COLLECTED AVERAGE STATIC PRESSURE OF DGM AVERAGE TEMPERATURE OF DGM BAROMETRIC PRESSURE. CARBON DIOXIDE CONTENT OF STACK GAS OXYGEN CONTENT OF STACK GAS NITROGEN CONTENT OF STACK GAS NITROGEN CONTENT OF STACK GAS AVE. SQ. ROOT OF S-PITOT DIFF. PRESSURE-TEMP. PRODUCTS CROSS-SECTIONAL AREA OF STACK (DUCT) TEMPERATURE OF STACK STANDARD VOLUME OF GAS SAMPLED, Vm(std), AS DRY STD. CM VOLUME OF WATER VAPOR IN GAS SAMPLE,STD WATER VAPOR COMPOSITION OF STACK GAS PROPORTION, BY VULUME,OF DRY GAS IN GAS SAMPLE MOLECULAR WEIGHT OF STACK GAS,DRY BASIS LB/LB-MOLE AVERAGE STACK GAS VELDCITY AVERAGE STACK GAS FLOW RATE (ACTUAL STACK COND.) AVERAGE STACK GAS FLOW RATE (ACTUAL STACK COND.) AVERAGE STACK GAS VOLUMETRIC FLOW RATE (DRY BASIS) PERCENT ISOKINETIC PERCENT EXCESS AIR IN STACK GAS
DGM	DRY GAS METER
Ý Pg	DRY GAS METER CORRECTION FACTOR STACK STATIC GAS PRESSURE
	PITOT COEFFICIENT
dH dP	ORIFICE PLATE DIFF. PRESS. VALUE PITOT DIFF. PRESS. VALUE
*** EPA	•

*** EPA

STANDARD Temperature = 68 deg-F (528 deg-R)

CONDITIONS Pressure = 29.92 in. Hg.

S. SCHWARTZ VERSAR INC. P.O. BOX 1549

SPRINGFIELD

VA 22151

REPORT NUMBER: L002008

SAMPLE IDENTIFICATION: 2380-01

CUSTOMER IDENTIFICATION: JZ-01 & -02

DATE SAMPLED: 12/01/87

TYPE OF MATERIAL: FILTER/LIQ

DATE RECEIVED: 12/02/87
DATE COMPLETED: 12/03/87

LARAMETER	REF. MEIHOD	TIMILL THO	RESULT
ARSENIC (T)	100	2 06	4180 UG
FINAL WEIGHT OF FILTEP		0.0 <mark>001</mark> GRAMS	0.0015 GRANC

S. SCHWARTZ VERSAR INC. P.O. BOX 1549

SPRINGFIELD

VA 22151

REPORT NUMBER: L002008

PAGE

IDENTIFICATION: 2380-02 SAMPLE

CUSTOMER IDENTIFICATION: JZ-03 & -04

DATE RECEIVED: 12/02/87

DATE COMPLETED: 12/03/87

DATE SAMPLED: 12/01/87 TYPE OF MATERIAL: LIQUID

LARAMETER REEL METHOD DEI LIMIT RESULT

HRSENIC (T)

100

2 06

578 UG

S. SCHWARTZ VERSAR INC. P.O. BOX 1549

SPRINGFIELD

VA 22151

REPORT NUMBER: L002008

PAGE

3

SAMPLE IDENTIFICATION: 2380-03 CUSTOMER IDENTIFICATION: JZ-05 & -06

DATE RECEIVED: 12/02/87 DATE COMPLETED: 12/03/87

DATE SAMPLED: 12/01/87

TYPE OF MATERIAL: FILTER/LIQ

LARAMETER	REF. HETHOD	IIMIL T30	BEQULT
HRSENIC (T)	108	2 06	7300 Uo
FINAL WEIGHT OF FILTER	and the time the	0.0001 GRAMS	O.7954 686m1

S. SCHWARTZ VERSAR INC. P.O. BOX 1549

SPRINGFIELD

VA 22151

REPORT NUMBER: L002008

PAGE

SAMPLE

IDENTIFICATION: 2380-04

CUSTOMER IDENTIFICATION: UZ-07 & -08

DATE RECEIVED: 12/02/87

DATE SAMPLED: 12/01/87

DATE COMPLETED: 12/03/87

TYPE OF MATERIAL: LIQUID

LARAMETER REE METHOD OFT LIMIT RESULL HRSENIC (T) 100 2 06 885 Uti

A Division of

S. SCHWARTZ VERSAR INC. P.O. BOX 1549

SPRINGFIELD

VA 22151

REPORT NUMBER: L002008

PAGE

SAMPLE IDENTIFICATION: 2380-05

DATE RECEIVED: 12/02/87 DATE COMPLETED: 12/03/87

CUSTOMER IDENTIFICATION: JZ-09 & -10 DATE SAMPLED: 12/01/87

TYPE OF MATERIAL: FILTER/LIQ

. ARAMETER	REF. METHOD	DET. LIMIT	result
ARGUNIC (T)	108	0.00	8500 UG
FINAL WEIGHT OF FILTER		0.0001 GRAMS	0.8343 ORAm

S. SCHWARTZ VERSAR INC. P.O. BOX 1549

SPRINGFIELD VA 22151

REPORT NUMBER: L002008 PAGE (

SAMPLE IDENTIFICATION: 2380-06 DATE RECEIVED: 12/02/87 CUSTOMER IDENTIFICATION: JZ-11 & -12 DATE COMPLETED: 12/03/87

DATE SAMPLED: 12/01/87 TYPE OF MATERIAL: LIQUID

ARAMETER REF. METHOD DET. LIMIT RESULT
DRSENIC (T) 108 2 UG 1770 UG

S. SCHWARTZ VERSAR INC. P.O. BOX 1549

SPRINGFIELD

VA 22151

REPORT NUMBER: L002008

PAGE 7

...,

SAMPLE IDENTIFICATION: 2380-07

CUSTOMER IDENTIFICATION: JZ-13 H20 BLANK

DATE RECEIVED: 12/02/87 DATE COMPLETED: 12/03/87

DATE SAMPLED: 12/01/87

TYPE OF MATERIAL: LIQUID

aramerer	REF. METHOD	QEI. LIAII	RESULT	
HRSENIC (T)	201	2 00	BOL. UU	

S. SCHWARTZ VERSAR INC. P.O. BOX 1549

SPRINGFIELD

VA 22151

REFORT NUMBER: L002008

PAGE

8

SAMPLE IDENTIFICATION: 2380-08

CUSTOMER IDENTIFICATION: JZ-14 NAOH BLANK

DATE RECEIVED: 12/02/87

DATE COMPLETED: 12/03/87

DATE SAMPLED: 12/01/87

TYPE OF MATERIAL: LIQUID

REF. METHOD DET. LIMITRATIETER RESULT eRGEHIC (T) 100 2 06 80L U0

4

BELOW DETECTION LIMIT

Date (DDMYY): i(30/87

Initials of Calibrator: TRC

Nozzle Identification No.	D ₁ (inches)	D ₂ (inches)	D ₃ (inches)	Average Diameter (inches)
	,187	:/86	.186	
A-1	. <u>D4</u>	,187	.188	.187 -
1 2	, 25-2	.25%	.253	
A-2	<u>D4</u>	<u>Ds</u> -	De	,255 ,455
	.251	.253	.255	
	, 304	.312	. 312	
A-3	1313	, 312	,313	,312
	,376	374	.375	: 7/
4-4	,377	376	.376	376

Note: The maximum acceptable difference between any two measurements is 0.004 inches. If this tolerance cannot be met, the nozzle should not be used.

Figure 5-2. Nozzle calibration sheet.

Date (DDMMYY): 11/30/97
Initials of Calibrator: 186

Nozzle . Identification	D ₁ (inches)	D ₂ (inches)	D ₃ (inches)	Average Diameter (inches)
B-1	,186	1185	.187	
	P4	<u>Ps</u>	26	:07
	1/87	,188	1186	, 187
B-2.	,252	1252	.251	
•	. 25-4	247	,252	,252
B-3	,302	,30(,303	
•	,302	,302	,303	,302
B-4	,373 ,374	.375 .375	,376 .375	.375

Note: The maximum acceptable difference between any two measurements is 0.004 inches. If this tolerance cannot be met, the nozzle should not be used.

Figure 5-2. Nozzle calibration sheet.

\sim	2
PLANT John Kink	PROBE LENGTH AND TYPE
DATE 12-1-8	MOZZLE I.D. 374
SAMPLING LOCATION Outlet	ASSUMED MOISTURE, &
, , ,	SAMPLE BOX NUMBER
SAMPLE TYPE TAS	METER BOX MUMBER
AUN HUMBER SPATTIZIONALSON	METER AND 1.83
OPERATOR	C FACTOR 7.7
AMBIENT TEMPERATURE	PROBE NEATER SETTING 24
BAROMETRIC PRESSURE	
STATIC PRESSURE, IP.)	HEATER BOX SETTING 248:
FILTER INLINEER (s)	REFERENCE AP.
SCHEMATIC OF TRAVERSE POINT LAYOUT	METER Y 1. DOS
SCHEMATIC OF TRAVERSE POINT LAYOUT	
A LL S ("//O READ AND RECORD ALL DATA EVENT WIT	N1 F3

TRAVERSE	SAMPLING	CLOCK TIME	GAS METER READING (V _a). R	YELOCITY HEAD	DIFFER		STACK TEMPERATURE		S METER RATURE	PUMP VACUUM, In. He	SAMPLE BOX TEMPERATURE, *F	MPMGER TEMPERATURE.
NUMBER	TIME, ala	CLOCK)	75,26)	(Δρ ₆), in. Η ₂ Ο	(AH), I DESIRED	ACTUAL	(T _g),°F	IMLET (Top by), of	OUTLET (T _{® sul}), °F	`	·	
A-1	5	1830	78.17	125	1.2	1.2		74	68	3	268	54
ν	10	183 <u>\$</u> 1840	81.04	24	1.1	1.1	188	77	6	5	264	53
_3	15	1840	84.20	.28	1.3	1.3		81,	48	2	26	
4	20	1845	87.47	.28	1.3	1.3	18.	84	69	1	267	52
	25	1850	90.57	-28_	1.3	13	188	46	69	7	270	
<u> </u>	30	1832	93,805	130	14	1.4	190	४%	69	7-	2.72.	20
		1900	93.805	22		1/3	100	80	69	3	- 25-	1 2
8-1	5	1905	96.48	123	1.0	1.0	190	82	68	5	7.75	52.
2	10	1910	102,48	127	1.2-	1.2.	192	\$2	<u> </u>	2-	270	45
<u>.</u> .	20	1920	125.45	12)	1.2	1.2	193	83	61	5	269	46
الح		1924	10854	12.75	1,3	1.3	192	83	101	10	264	4
Ç	30	930	404.111	12]	1,2	12	- 192	152	(0)	7	262	48
				,	AY 2							
			LeakVa	Thec=	0.00	86	100HZ					
						ļ	· · ~	·			,	
			2									
			36357			1.225	157	11.513			·	
		 										
											·	
			<u> </u>									
												

COMMENTS.

	ORGANIC	SAMPL	ING	TRAIN	RECOVERY	SHEET
--	---------	-------	-----	-------	----------	-------

	SAMPLE T BUM MUMB SAMPLE B CLEAN-UP	EN BOAT- 52-	1201-As-02			
	FRONT HA	LF - PARTICULATE PRASE WASH OF MALZLE, PRODE, FRONT MALF OF FILTER I	CYCLORE (BYPASS). CONTAINS	_	RAVINETRIC RESULTS LABORATORY RESULT	
	Flzku	we	231.7 L CONTABLER	F1MA: TARE:		
				FRONT HALF SUBTOTAL		
	TRANSFER (SOLVE) RESEN TRA	VAPOR PHASE LINE AND CONDENSER INT RINSE! AP (XAO-2) CAP & LABEL INMEDIAT	B1/2 ====	27.5 ml Na OH		
	IMPINGER	NO.1 (QA)	CONTAINER	(See)	impinger Nesults se Side)	
H Ringe	HOTES/OBS	SERVATIONS.				
+ 16.5	Impinger No.	Solution Used EMPLY	Amount of Solution (m)	Imp. Tip Configuration 14.0.	Weight (grass) Final 132.○ Initial 45月 1	
+33.1	2	_d:0	~ 120 mg	modified	Final 917.4 Initial 940.2 W. gain 277.3	
+ 23.4	3	H20	~110 ml	. ^ /	final 928.9 Initial GIR.	
+26.8	•	Silva Gel	<u>O</u>	modified .	Final SSO. 6 Initial URZ.3 W. gain	
	•				Initial OC Services of the Initial Initial	
	7				Vt. gain Final Initial Vt. gain	
		CAIN OF IMPINCERS (gran				
		e oeganic collection ef urther Analysis:	FICTENCY - SAVE IN CONTAINER 84.			
	Sample No.			Spectes	Mesults (Total mg)	

PLANT Sohm ZIMS
DATE 12-1-87
SAMPLING LOCATION CONTRACT
annua aver inte
MUN NUMBER 30AT-52-1201-A5-02
OPERATOR DOERLE
AMBIENT TEMPERATURE
BAROMETRIC PRESSURE
STATIC PRESSURE, (Pg)
FILTER NUMBER (s)
THE LESS MORNINGS IN CO.

BOZZLE I.D. ASSUMED MOISTURE . . ______ SAMPLE BOX NUMBER_ METER BOX NUMBER C FACTOR ___ PROBE HEATER SETTING 248 2 MEATER BOX SETTING. REFERENCE AP __

SCHEMATIC OF TRAVERSE POINT LAYOUT METER Y 1.00576

READ AND RECORD ALL DATA EVERY _____ MINUTES

			ME AN HUM WE C								
TRAVERSE POINT	CLOCK TIME	GAS WETER READING	VELOCITY HEAD	ORIFICE I	PRESSURE ENTIAL n. H ₂ O1	STACK TEMPERATURE (T _a).°F	TEMPE	S METER RATURE	PUMP VACUUM, In. Me	SAMPLE BOX TEMPERATURE, *F	MPMGER TEMPERATURE. PF
NEMMER	SAMPLING CLOCKI		tap _s), in. H ₂ O	<u></u>	ACTUAL	,,,,,,	INLET (To la). of	OUTLET			
	1307		 		 		600	74	(,	230	30
174	5 1807	84.00	129	177	14	193	77				37-
- (10 1812	87.09	12	1.4	1.4	194	137	75	8	254	47
¥	10 1817	7:34	.28	1.4	164	194	1 0 -	74		769	45-
- 3	- 1	93.29	127	1.3	13	194	88	74	9	274	47
	182	96.75	,32	14	1110	193	CID.	74	-	7.15	48
	5/ 1832	99.706	12:7	1.3	E.V.	193	94	75	/-	268	40
	1835	99.104		<u></u>				<u> </u>	 		
13-1	5 840	102.90	.30_	1.5	115	192	88	76	<u>l</u> e	273	l at
2	10 1945	106.09	130	1.5	145	193	92	77	<u> </u>	7.61	56
3	10 1816 18 1830	109.09	74	11.3	1.3	85.	23	177	7	266	73
	20 1855	112110	124	1.3	7.3	185	93	77'	4_	256	48
- 4	5/1 3	115, 110	126	1.3	113	186	92	76	4	258	48
		118.000		11.3	1.3	193	92	75	4	25%	43
C	30 2105	110000			1				<u> </u>		<u> </u>
	1163	LZHKV = C.	1204/2	10"	1						<u> </u>
	-	- CHILV - CI	Ver ice	1							<u> </u>
		37.00	1	†	1	191	82		}		<u> </u>
	 	a) /, U	 	1	1						
			 	1	1			[<u> </u>
	ļ		 	1	1	1					
	<u> </u>		 	1	1	1					
			1	1	1						<u> </u>
			1	1	1					<u> </u>	<u>]</u>

COMMENTS

ORGANIC SAMPLING TRAIN RECOVERY SHEET

		MANT John S.		MENTS.							
Secretary for a Large (Secretary for a Large											
MARTINET BY MARTE STATE TO A STATE OF THE ST											
SUPPLY DISTRICT THE STATE OF TH											
CONTAINER AS INCIDENT WAS CONTAINED AMOUNT OF SALES CONTAINER AS CONTA		10 - 64-101-X2-1201-A5-01									
SOLVERT STEARS DISCONTINUES OF STATE OF											
Security was or active format and security forms of the security of the securi											
SOURCE VALUE OF FILES WAS DEPOSED (SPENS). CONTAINED B FIRM. 14 14 15 16 16 16 16 16 16 16		COLVENT SINCES	10 Dact								
Service was a service of service (Process). Contained a final of the service of t		FRONT HALF - PARTICULATE	PMASE	CRAY	IMETRIC RESULTS LABORATORY II	ESULTS					
THE TOTAL SOLUTIONS PAGE TRANSPORT LINE OF CONTROLS OF THE CONTROL OF THE C		SOLVENT WASH OF HUZZLE, P	ROBE, CYCLORE (BYPASS), CONTAINER								
TOTAL MELICIT CALLE OF INPINCES (grams) TOTAL MELICIT CALLE OF INPINCES (gram		PLASE, PROBIT MALE OF FI	LTER HOUSE	TARE:							
FILTER (9) FROM THAT SUBTIFIED FROM THAT SUBTIFIE		-1/	,	€ 7:	<u> </u>						
Filter(g) FROM THAT SUBTIFIED	1-12 16011	= 227.1 ml meranea	e time.								
DECEMIC 144000 PORCES TRANSPORT MINES TRANSPORT TOTAL MELOCIT CARRIED OF INFINES TRANSPORT TOTAL MELO											
DECEMIC VALUE POLICY TRANSPORT VALUE FOR CONCERNS TO CONTAINER & JZ-0+ (SERVING MICE) RESIDE TRANSCORDER (1980) RESIDENT (1980) RESIDENT VALUE (1980) RE		Filter(a)									
TRANSPIRE (TEM OR CONTRINCE CONTRINCE & JZ-0+ (SOUTH PRICE TO LINE)	7:		<u> </u>								
TRANSPIRE (TEM OR CONTRINCE CONTRINCE & JZ-0+ (SOUTH PRICE TO LINE)			FRONT WALE CURTOTAL	_							
TRANSPORT LIME AND CONCENCE (SOUNDER SEED AND CONTAINER & JZ-0+ WILL TRANSCAPE TO A LANGE I PRODUCT TO TAIL T					······································	'					
(SOURCE PIECE) (SOURCE PIECE) (SOURCE PIECE) (SOURCE PIECE) (SOURCE PIECE) (SOURCE SERVED STANCE)	****		-7-24								
MESION TEAM (MODEL) (MOTEL MODEL IMPOINTER DELIVERY DIVERTING AND CONTAINER AND MET CATE (MOTEL MODEL MODEL IMPOINTER DELIVERY DIVERTING AND MET CATE (MOTEL MODEL MODEL IMPOINTER DELIVERY DIVERTING AND MET CATE (MOTEL MODEL MODEL MODEL MODEL AND MET CATE (MOTEL MODEL MOD						·					
TOTAL METER NO. 1 (QA) CONTAINER AS METERS (grams) TOTAL METERS NO. 1 (QA) CONTAINER AS METERS (Grams) CONTAINER AS METERS (Grams) TOTAL METERS (Grams) CONTAINER AS METERS (Grams) CONTAINER AS METERS (Grams) CONTAINER AS METERS (Grams) TOTAL METERS (Grams) CONTAINER AS METERS (Grams) CONTAINER AS METERS (Grams) TOTAL METERS (Grams) CONTAINER AS METERS (Grams) CONTAINER AS METERS (Grams) TOTAL METERS (GRAMS (GRA		MESTIN TRANSCHAR-2)	Filter holder	29.3 ms							
TOTAL NOTES CONSERVATIONS NO		, ,	MEDIATELY 31/2 rinset.								
MITES/CONSCENATIONS NICH Improper the Solution Used Amount of Solution (al) Inc. Tip Configuration Solution Used Initial 2 How Inc. Initial 1 How Initia		[107] MEER 10. 1 (QA)	CONTAINER		Inger Tesults	I					
MOTES/CRESERVATIONS NICH Impinger to Solution Used Amount of Solution (at) Important Solution Used Institute (at) In State Institute		•	•	Anverse	Side)						
Moth labinger as Solution Used Assumt of Solution (all) Imp. Tip Configuration In the linitial linit					TOTAL	'					
Mich lapinger to Solution Used Amount of Solution (all) 10 2 moty C 100 ml 10 2 moty C 100 ml 10 10 moth lapinger to Solution (all) 10 moth lapinger to Solutio	iNSUS_	MULTER WAS SAULT TOWN									
100 ml 1	NiOH		terd Arrest of Columbian (m)) Inn Tin Parker, and in	Market (access)						
TOTAL VELOTI CAIR OF INPINCERS (grams) TOTAL VELOTI CAIR OF INPINCERS (grams) 100 100 100 100 100 100 100 100 100 10	2,00	•		-	•	بيا					
The superior of infincers (grams) Total Weight Collection efficiency - save in container da. Samples for outdoors.		7			Initial	41					
He 29,4 1 He 20,5 2 He 21,4 1 He 21,4 1 He 21,4 1 He 22,5 2 He 21,5 2	5/2F 4 /	/ , Hei	الم دورات المر	in a difical	Finel 905	5, 5					
+ 29.4 1 1 1 1 1 1 1 1 1	+ 17.4	17									
+ 22.5 174 empty C modified Final 546.9 + 31.7 1		1 <u>H</u> 2	C ~11Cml	<u> </u>	Final 850	. 3					
+ 31.7 5 Silica gel 2509 modified Final 757.7 Initial 710.18 W. gain 47.7 W. gain 757.7 Initial 710.18 W. gain 9 Final Initial W. gain 9 Final Initial W. gain 9 For subject Gain of Impirices (grams) 878.70 TOTAL MEIGHT GAIN OF IMPIRCES (grams) 878.70 Samples for Further Analysis.		A	1	.0.0	W. gain 777	4					
Some to supplie for supplied s	+ 22.5	7. <u>em</u>	pty C	modified	FINI 546	9					
TILLE 3 Initial We. gain Final Initial We. gain TOTAL VEIGHT GAIN OF INPINCERS (grams) TOTAL VEIGHT GAIN OF INPINCERS (grams) TOTAL SAMPLE FOR ORGANIC COLLECTION OFFICIENCY - SAVE IN CONTAINER 64. Samples for Further Analysis.	+ 31.7	. 1	, ,	1.0							
TILL 3 Final) in	s <u>Silica</u>	<u>gel 2509</u>	modified							
Final	TLE 3		_			9					
TOTAL WEIGHT GAIN OF IMPINGERS (grams)		·			laitie						
TOTAL VEIGHT GAIN OF IMPINGERS (grass)											
TOTAL MEIGHT GAIR OF IMPINGERS (grams) 878.70 **On SAMPLE FOR ORGANIC COLLECTION EFFICIENCY - SAVE IN CONTAINER 64. Samples for Further Analysis:		. 1			Initial						
TOR SAMPLE FOR ORGANIC COLLECTION EFFICIENCY - SAVE IN CONTAINER 84. Samples for Further Analysis:			wad:-X		VR. getn						
Samples for Further Analysis		TOTAL VEIGHT GAIN OF IMPINGES	s (gram) 878,20								
Samples for Further Analysis		TO SHOULD AND DECAME PRINTS	TION CERTIFIERY - SAVE IN CONTAINER AL								
		•	THE STREET, SHIPE IN CONTRACT PRO	•							
		•	Onscription	Sancies	Bosnits (Total on)						
					manage of the sale of the						
					*						
											
											

DRY MOLECULAR WEIGHT DETERMINATION

PLANT_olin Zinl DATE_1 Dec 87	COMMENTS:	Tuken	Levin	1 st	M108 (As) Run
DATE 1 Dec 87	_	,		•	
SAMPLING TIME (24-hr CLOCK)					
SAMPLING LOCATION OUTLE T					
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) <u>INTEGRATED</u>					
ANALYTICAL METHOD () BSAT	_				
AMBIENT TEMPERATURE					
OPERATOR ASC					

RUN	1			2	;	3	AVERAGE		MOLECULAR WEIGHT OF
GAS	ACTUAL Reading	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET VOLUME	MULTIPLIER	STACK GAS (DRY BASIS) M _d , lb/lb-mole
CO2	8.4	84	45	9.5			85	44/100	
O2(NET IS ACTUAL O2 READING MINUS ACTUAL CO2 READING)	145	6.1	145	6.0			6.1	32/100	
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)					• .			28/100	
N ₂ (NET IS 100 MINUS ACTUAL CO READING)								28/100	

TOTAL 29.60

(i)(,
PLANT
DATE 12-01-87
SAMPLING LOCATION Scrubber Out
SAMPLE TYPE BUAT-12-1201-AS-03
MERATOR DOCKLE
AMBIENT TEMPERATURE
BAROMETRIC PRESSURE
STATIC PRESSURE, IP 1 1 1 3
FILTER HUMBER (III

SCHEMATIC OF TRAVERSE POINT LAYOUT

METER Y LOOS

READ AND RECORD ALL DATA EVERY ______ MINUTES

TRAVERSE	SAMPLING	CLOCK TIME	GAS METER READING (Y _m), R ³	YELOCITY HEAD (AP ₂), in. H ₂ O	ORIFICE P DIFFER	RESSURE ENTIAL n. H ₂ O)	STACK TEMPERATURE (T _a), °F	TEMPE	S WETER RATURE OUTLET	PUMP YACUUM, in. Ng	SAMPLE BOX TEMPERATURE, °F	MPMCER TEMPERATURE. *F
NUMBER	THE ale	CLOCK	12.000	tap _s s, m. typ	DESIRED	,	•	ULET (Tario).°F	(Ta pal). of			and the state of t
		1920		21.	1.2	1.2-	188	24	64	2,-	274	4.5
A-I	8	1925	15.05	126	1.05	4	190	-18	64	2	215	41.
2	įů	1930	1976		1100	1/16/		80	64	١ ٦	272	50
3	15	1935	20.66	125	1.2	1.2-	191	80	104	3	269	60
7	20	1910	73 65	78	1.3	1,3	191	81	65	4	270	50
3	25	1945	2673	127	1,2	1,2	197	81	65	\ 3	274	.5z_
<u>(1)</u>	30	1950	21.140	1-1-1-	112	1-11-	1					
		1958	29.140	,32_	1,0	15	188	76	65	4	274	52
13-1	135_	1959	33.04	126	1,2	17	192	80	(-Y	3	265	45
2	40	2004	36.01	76	1.2-	1.2	191	80	64	4	261	44
	145_	2009	38,97	.28	1,3	1,3	195	80	CC	4	271	42-
4	50	2014	42,07	128	/ 3	1.3	193	80	64	Ci.	267	41
	55_	2019	45.15		111	1/1	191	80	64	7	267	411_
(e	160	2024	47.998	24	1	 	 	1 0	1 - 	 		
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	1 4 0	1 7	811	 	 	 	 		
	L		VAR Valds	=000	1(1)	112	191	11.0				
			35,998	 	 	110	1-137-					
				 	 	 		 	 			
				 	 	 		 	 			
	1				 	 	 	 	}		ļ	
					 	 	 	 	 			
					 	 	 	1				
					 	 	 	 				
	1			<u> </u>	J	1		<u> </u>	J	L	L	

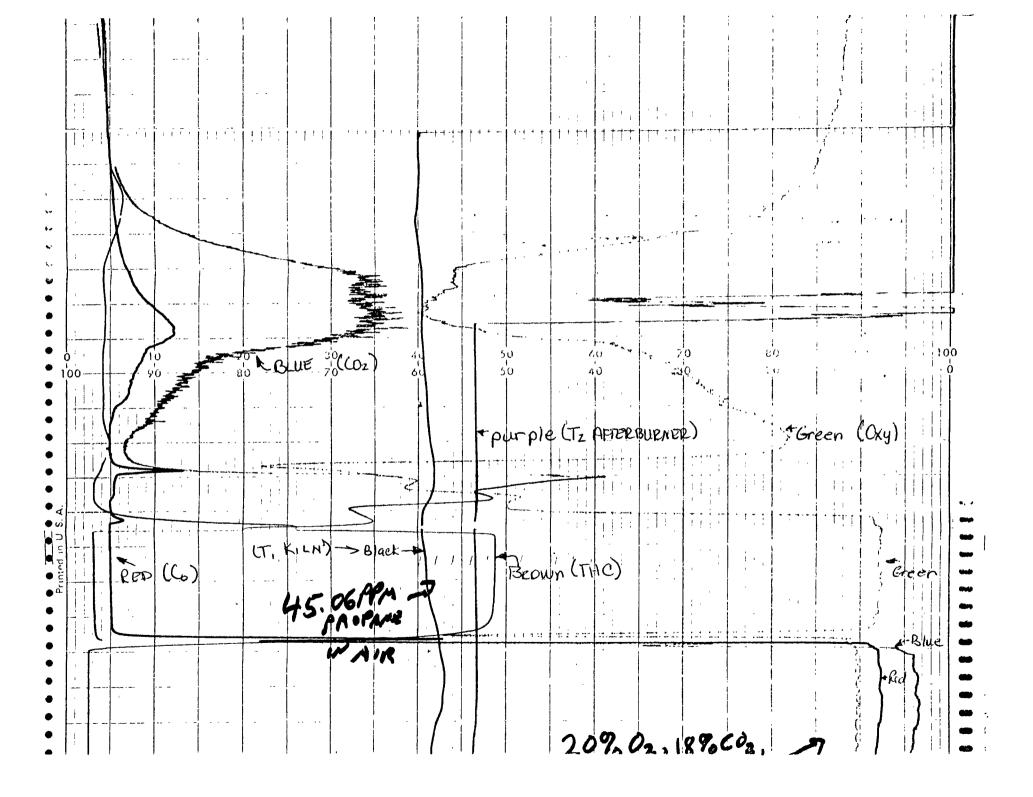
COMMENTS

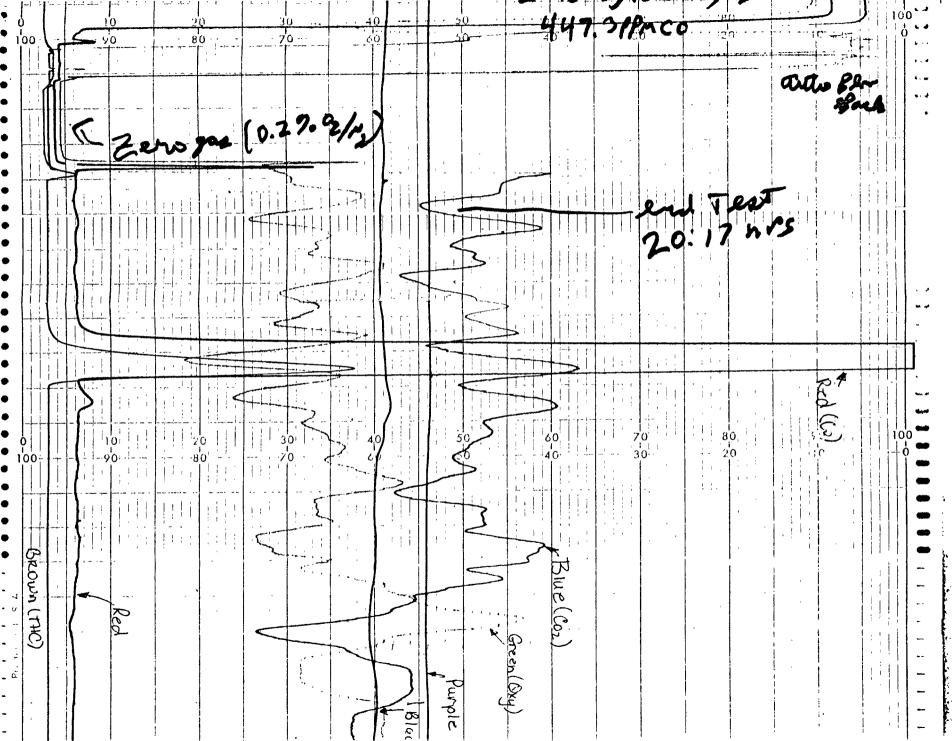
EPA (Dur) 235 4:77

ORGANIC SAMPLING TRAIN RECOVERY SHEET

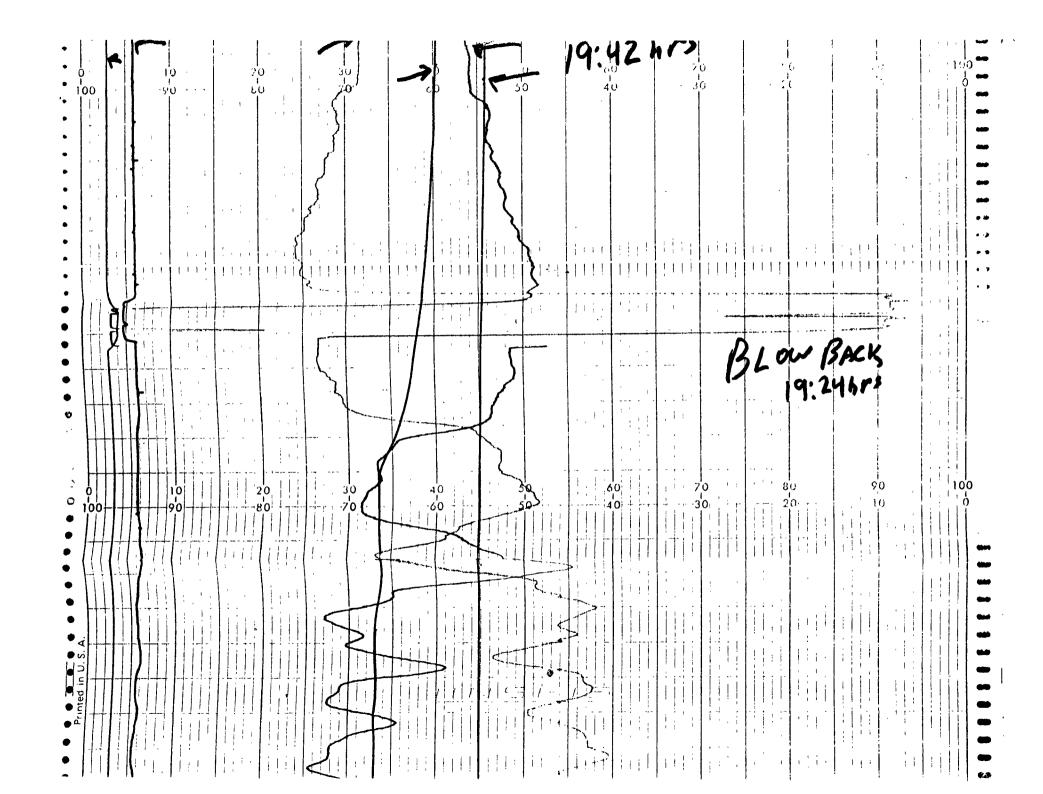
BATE SAME SAME SAME SAME SAME SAME SAME SOLV	TIME LOCATION SCIENARY RESTRICT AND THE TOTAL RESTRICT AND THE TOTAL RESTRICT AND THE PROSE FOR THAT - PARTICULATE PRASE FIT MALE - PARTICULATE PRASE	OUT 1201-A5 73	FIMAL TARE:	IMETRIC RESULTS LABORATORY RESULTS
FILI	ER WEET	CONTAINER #	FINAL:	~
TRAN (3 RES1	MITC-VAPOR PHASE ISFER LINE AND CONDENSER IOLVENT RINSE) IN TRAP (XAO-2) INTEL: CAP & LANGL INVEDIATELY INGER NO.1 (QA) ,	CONTAINER & CONTAINER &	26 ml J. Ott	inger Mesults
10011 10	Solution Used Examply H20 H20 Empty Salica Gel	~ 130 ml ~ 100 ml ~ 250 g	modified modified modified modified modified	Final 919.4 Initial 470.5 W. gain 244.5 Final 101.7 Final 739.7 Initial 45.4 Initial 45.4 Initial 45.4 Initial 45.4 Initial 48.5 Final 69.7 Initial 45.4 Initial 45.1 W. gain 69.7 Initial 45.4 Initial 45.1 W. gain 69.7 Initial 45.6 Final 69.7 Initial 45.6 Final 69.7 Initial 45.6 Final 69.7 Initial 45.6 Final 69.7 Final
TOTAL NE	IGHT CAIN OF IMPINGERS (grams) LE FOR ORGANIC COLLECTION EFFIC For Further Analysis: I Ro. Desc.	1EMEY - SAVE IN CONTAINER 84	Species	Results (Total mg)

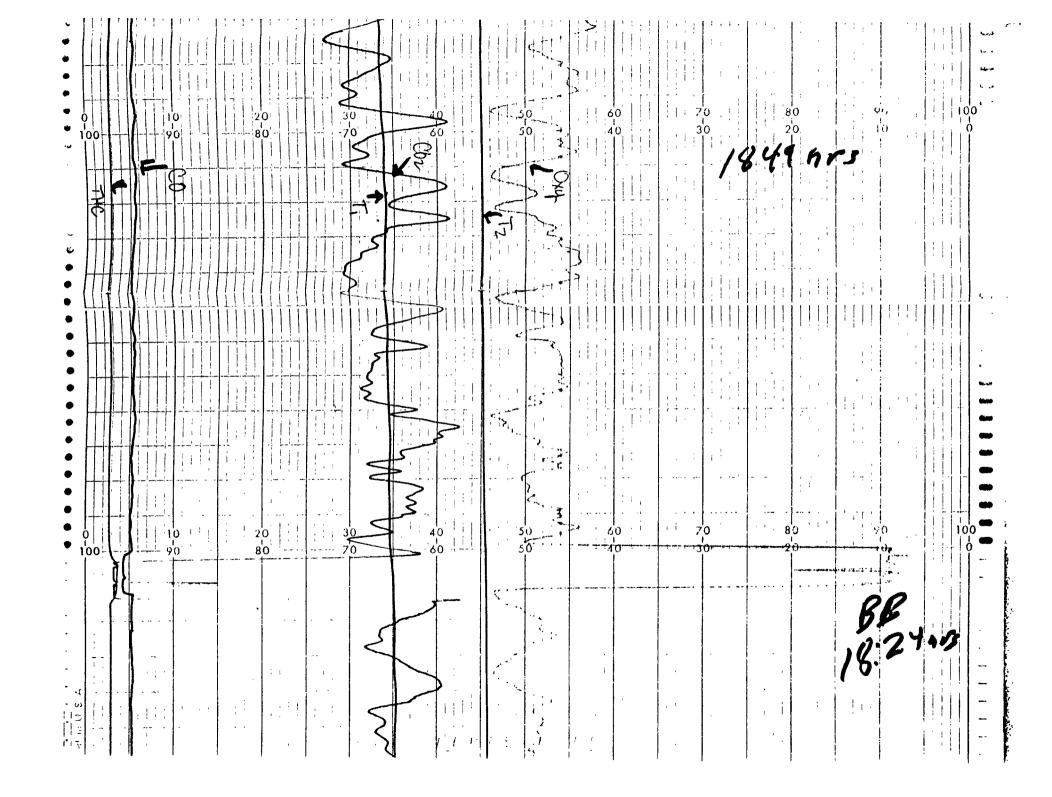
DRY MOLECULAR WEIGHT DETERMINATION


PLANT JOHN ZINC	. COMMENTS: Talon during 3 2st MIO8 (15) Run
DATE 10EC 87	· g · / · · · / rs/ rling,
SAMPLING TIME (24-hr CLOCK)	
SAMPLING LOCATION OUTLET	
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS)	_
ANALYTICAL METHOD OBSAT	
AMBIENT TEMPERATURE	
OPERATOR MC	

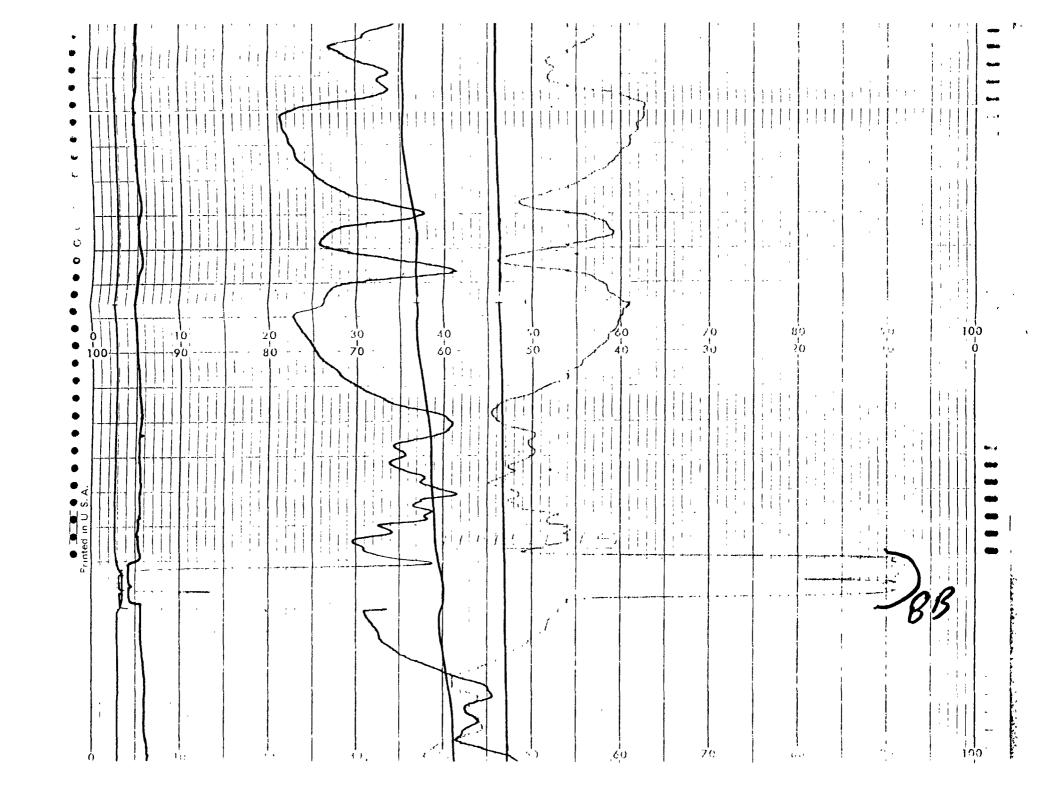

RUN	1		2		3		AVERAGE		MOLECULAR WEIGHT OF
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL Reading	NET	NET VOLUME	MULTIPLIER	STACK GAS (DRY BASIS) M _d , lb/lb-mote
CO ₂	10.4	10.4	10.2	10.2			10.3	44/100	
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	160	5.6	16.0	5.8			5.7	32/100	·
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)					• .			28/100	
N ₂ (NET IS 100 MINUS ACTUAL CO READING)								²⁸ /100	

TOTAL 29.88

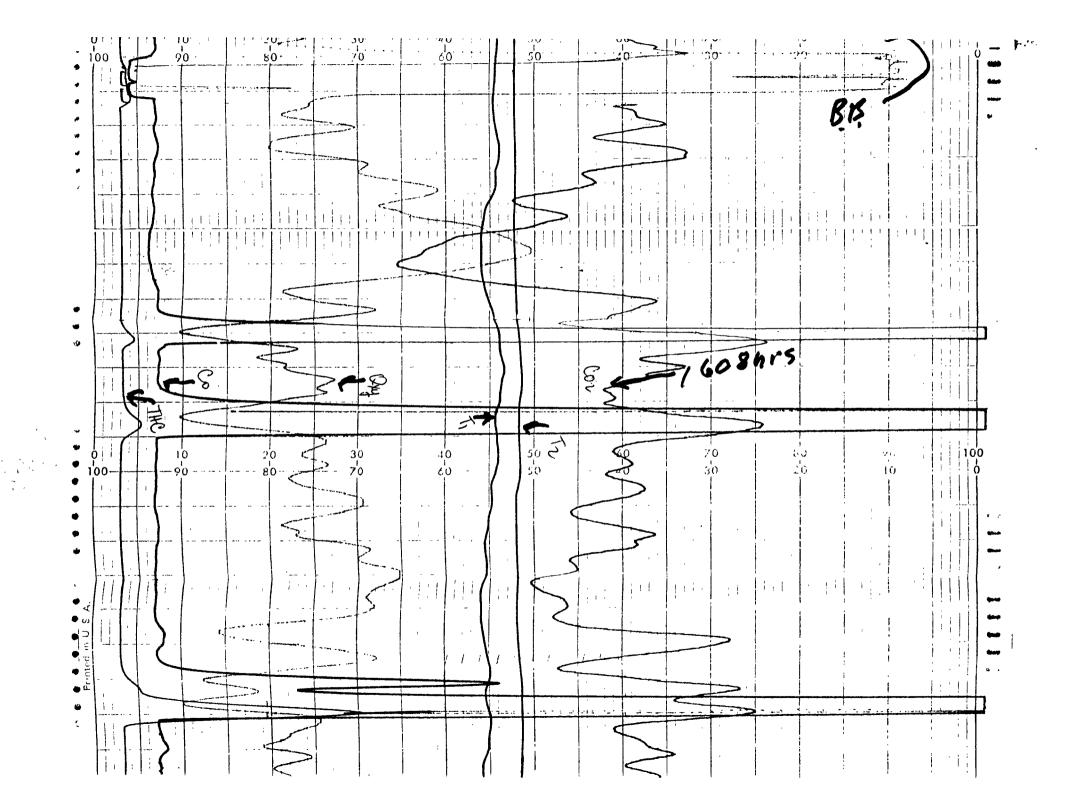

EPA (Dur) 230 4/72/

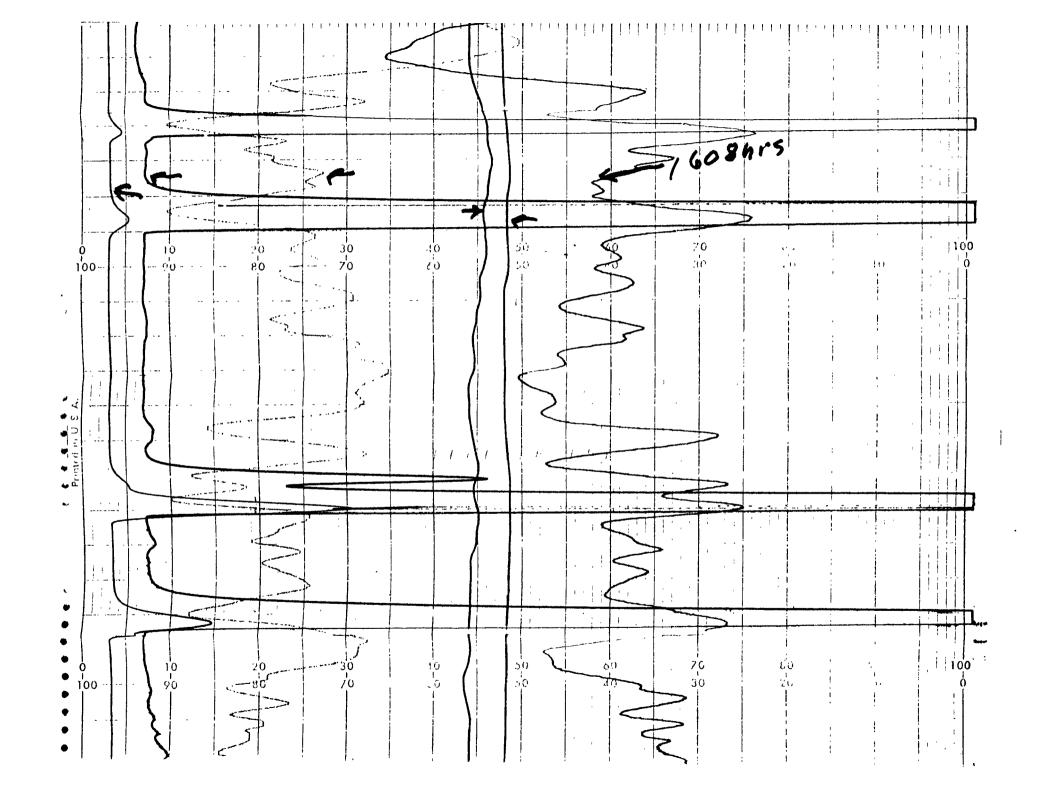

57RIP CHART -212-4-87 30 70 40 60 80 1 1 1 1 1 90 *(* () X()

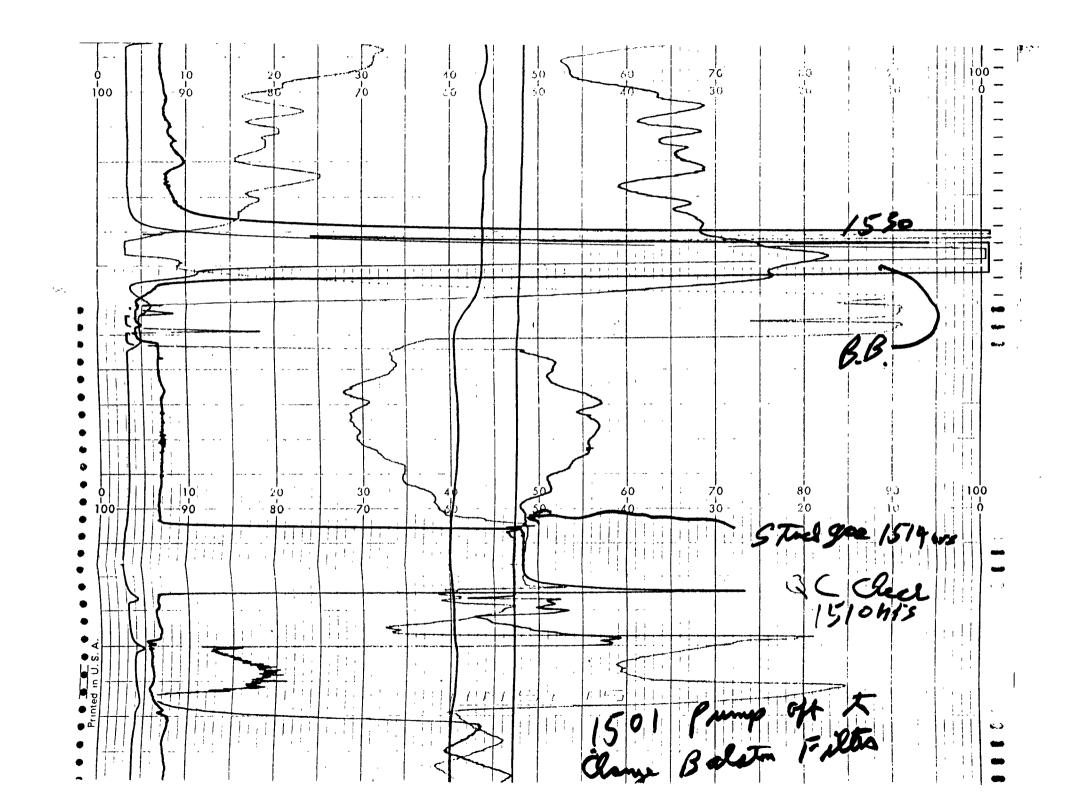


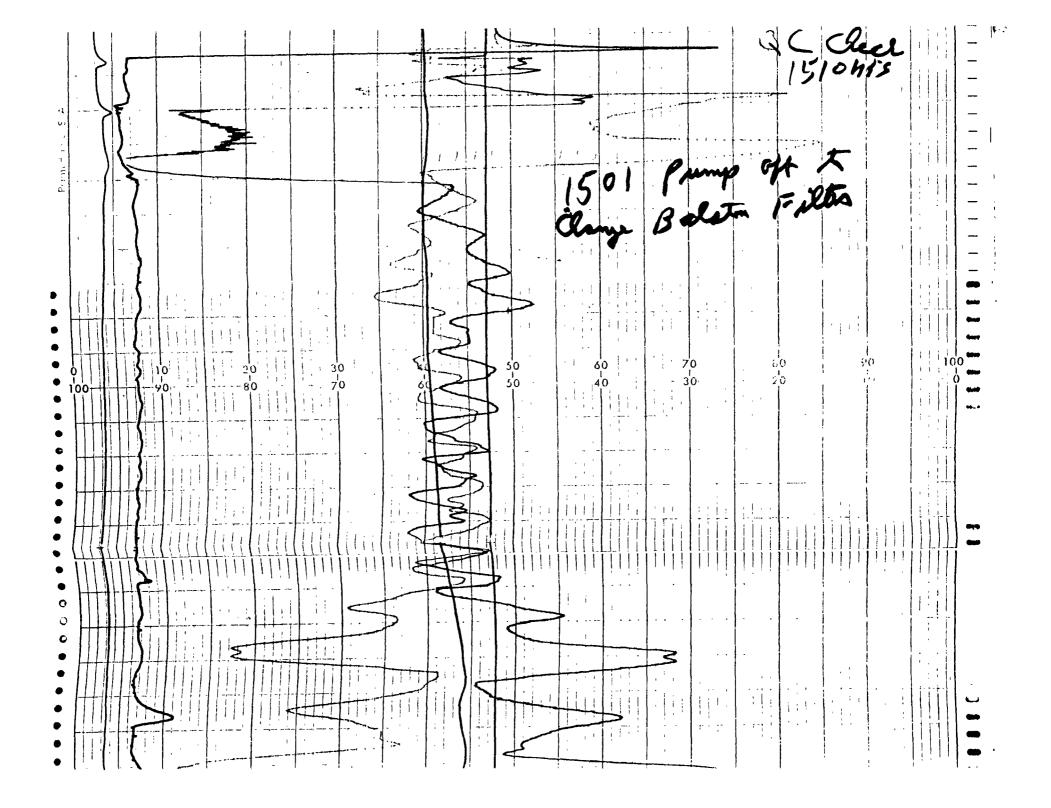


•

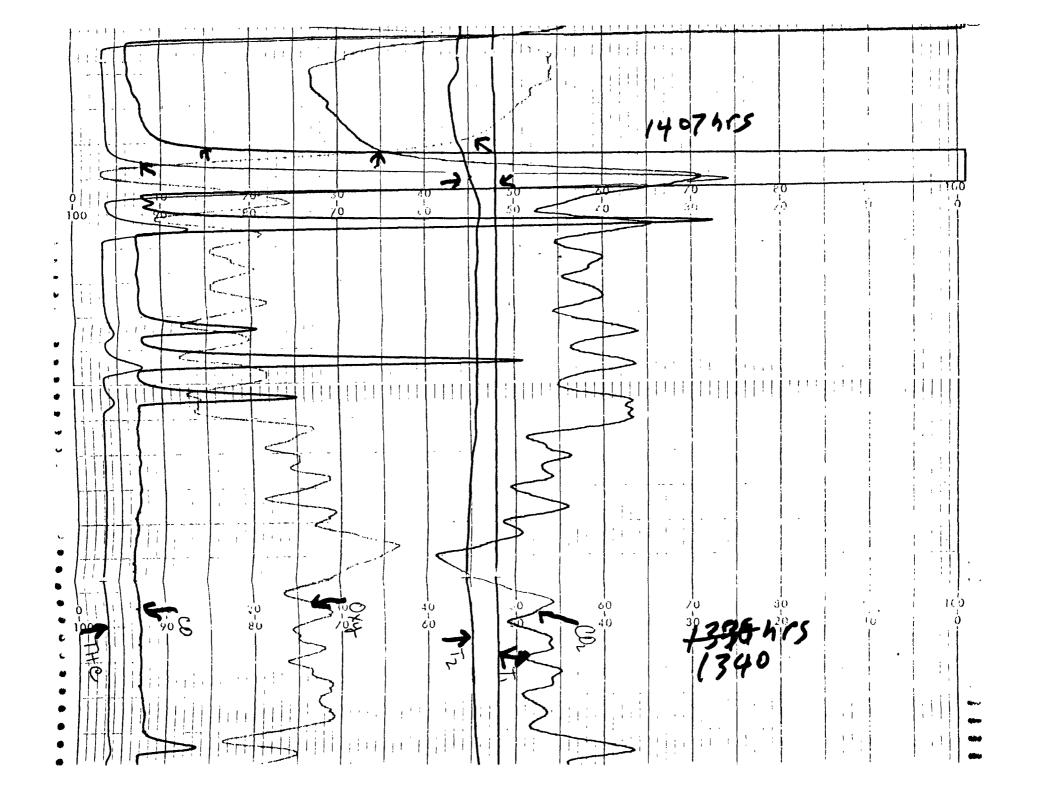


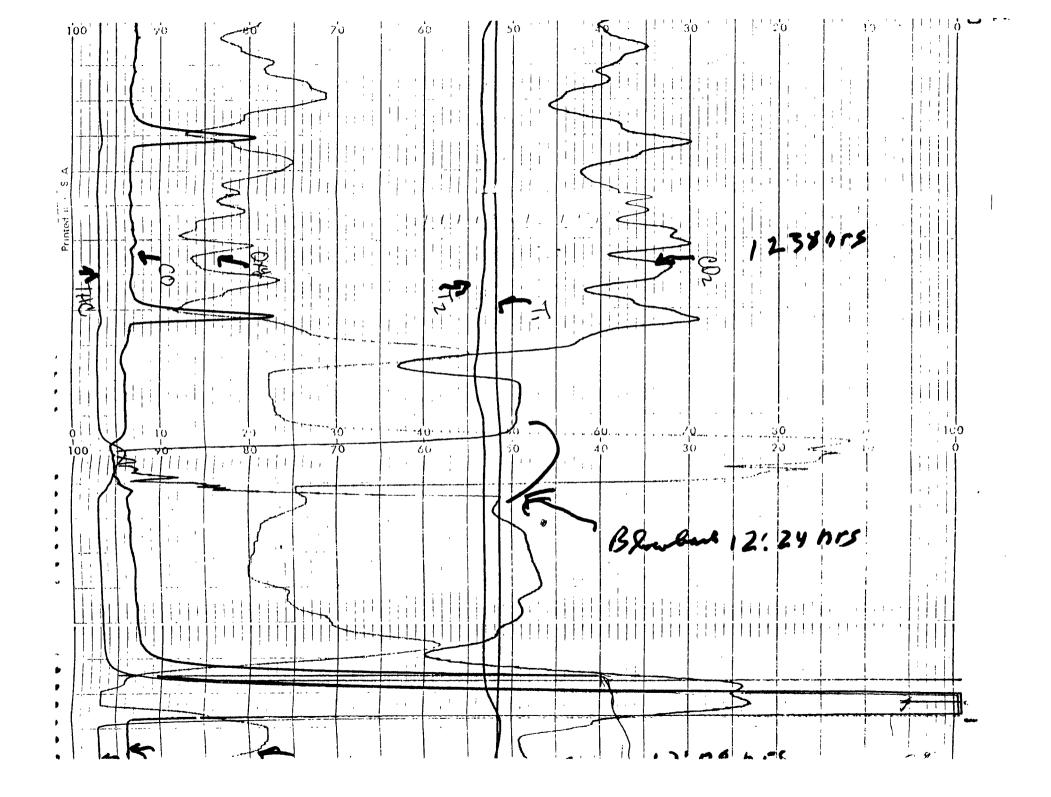


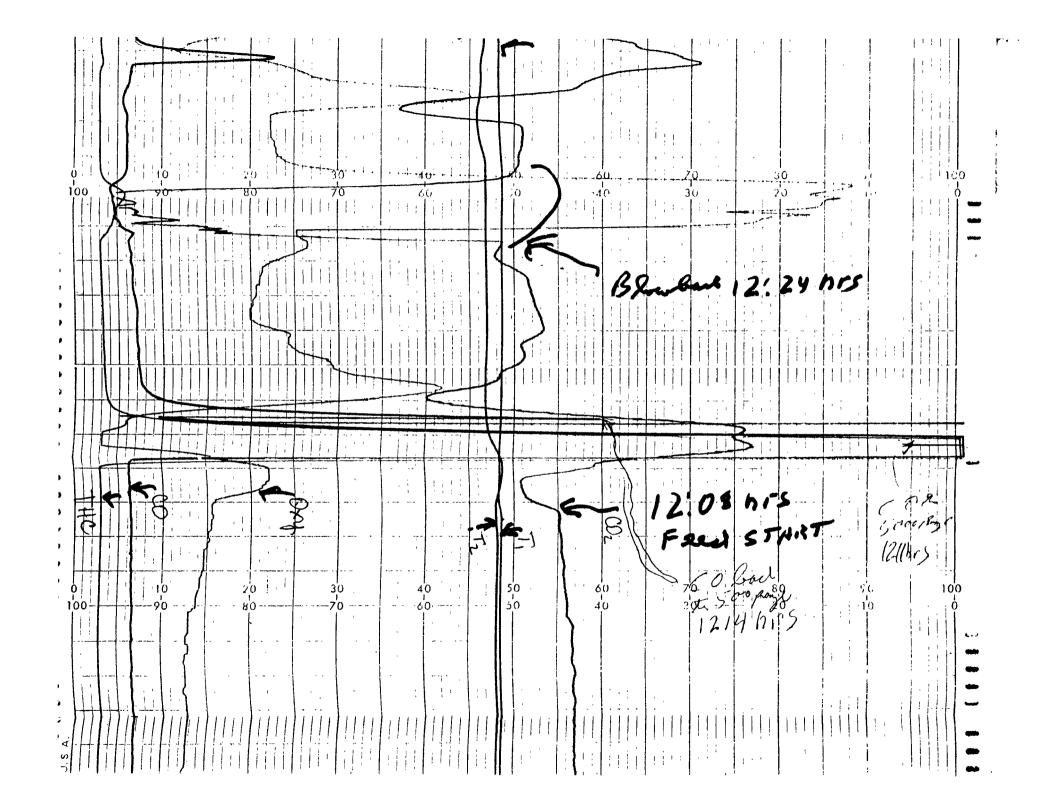


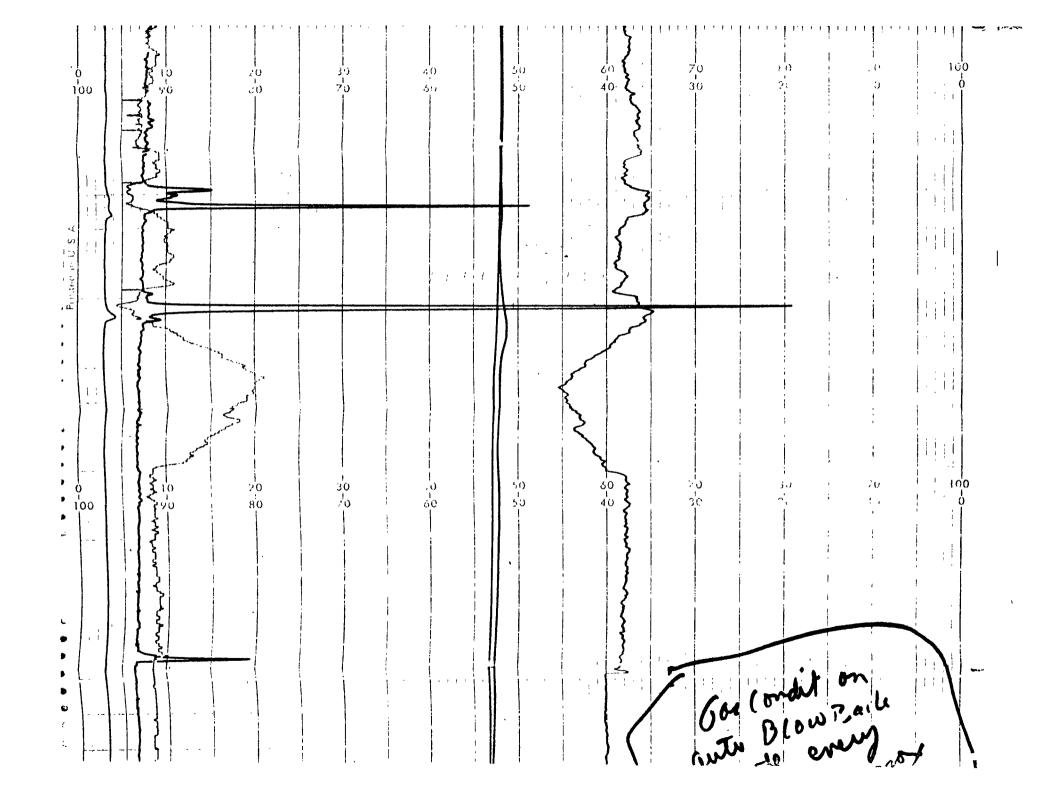

30 70 00 00 00 00 00 00 00 00 00 00 00 00

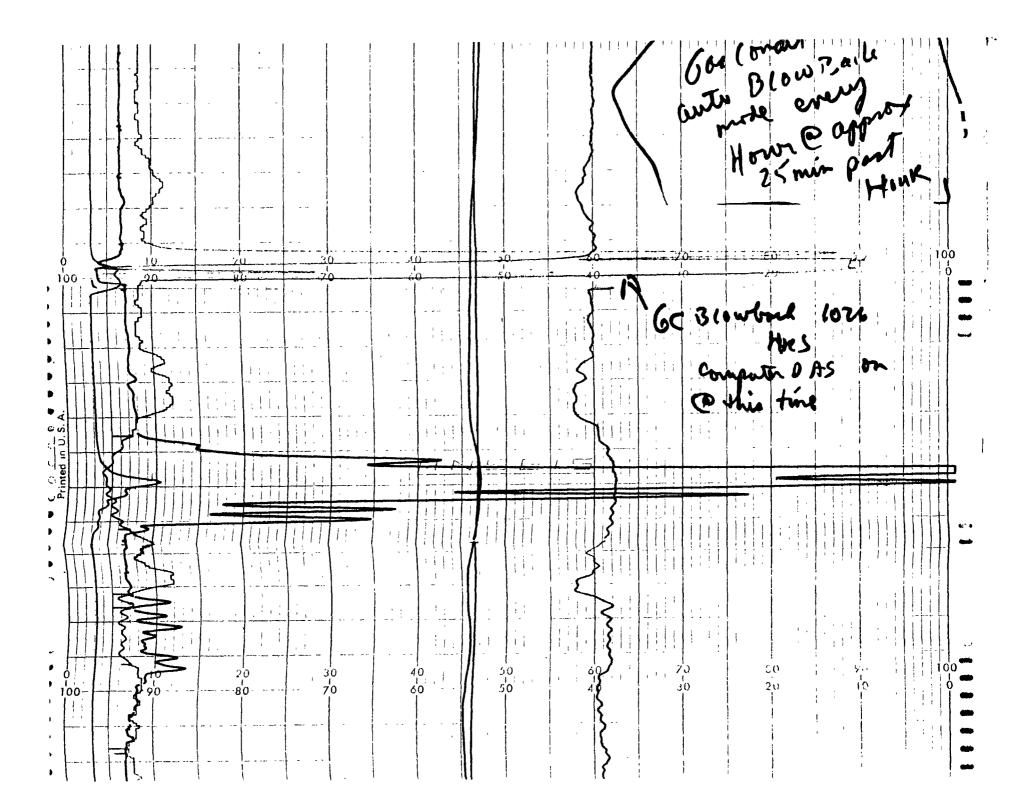

	3		
	3	123° F	
0 100 90 80 70 6	50 4	30 - 30 - 20	
· S	2	81644 475	
Printed in			

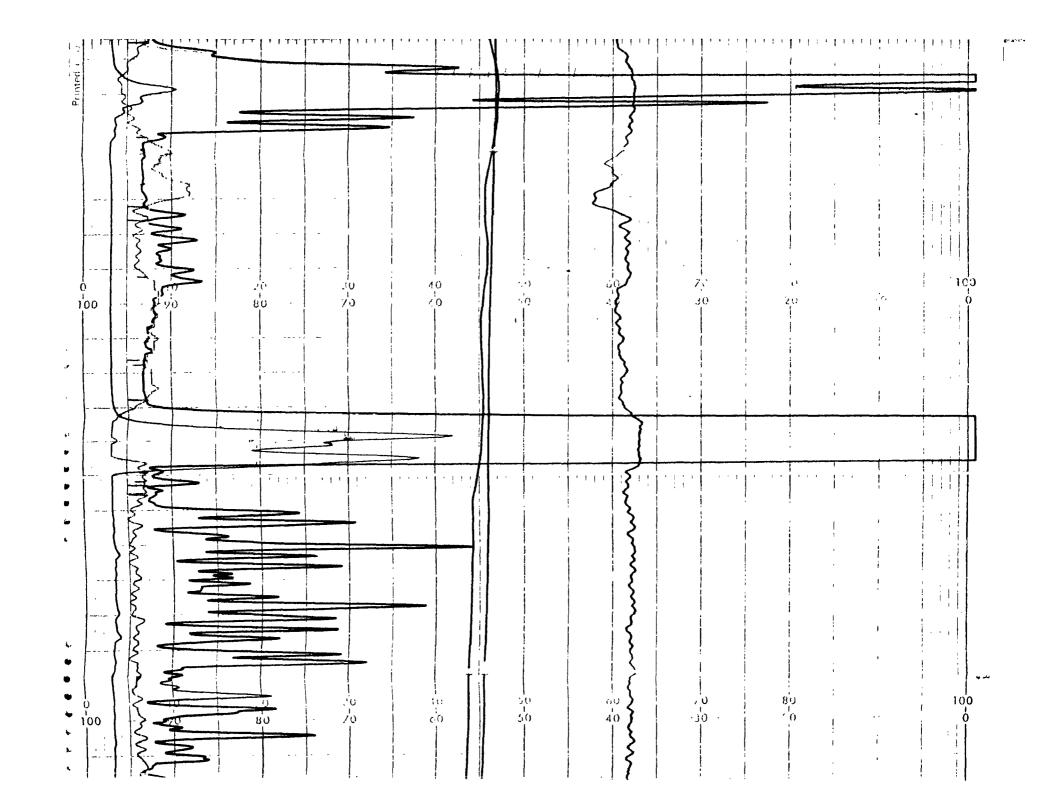




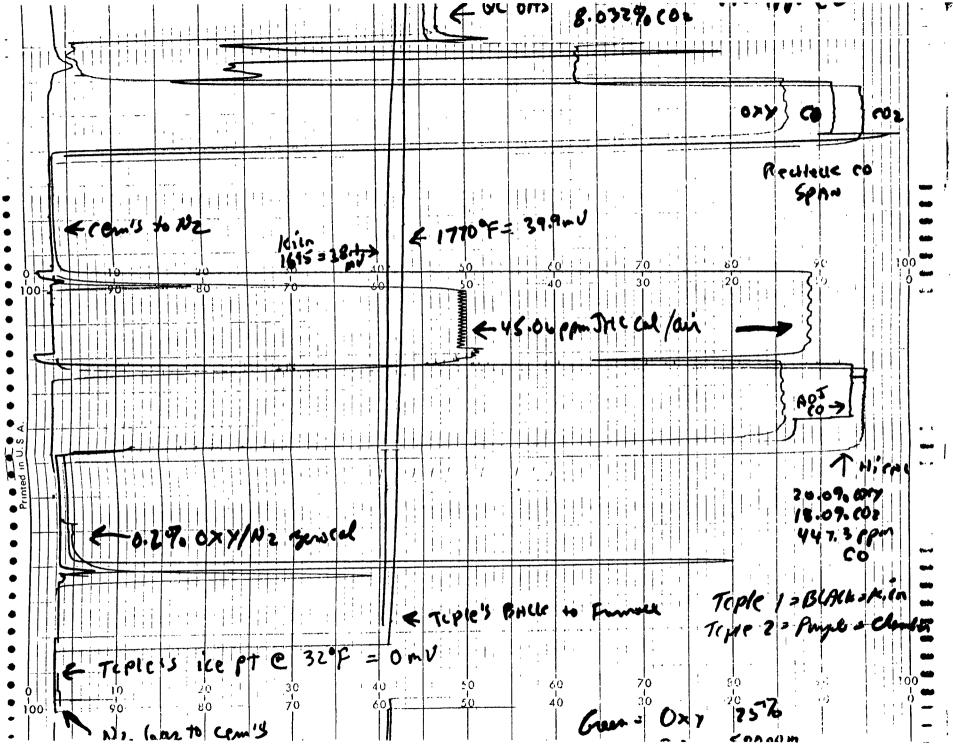


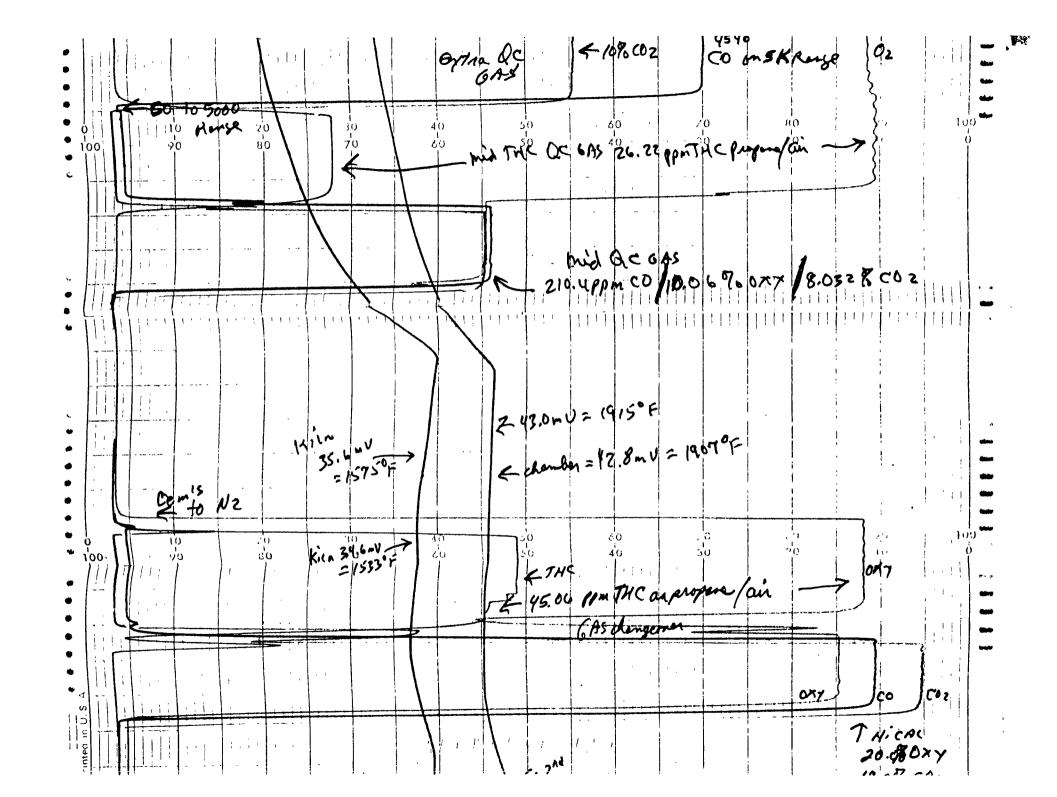


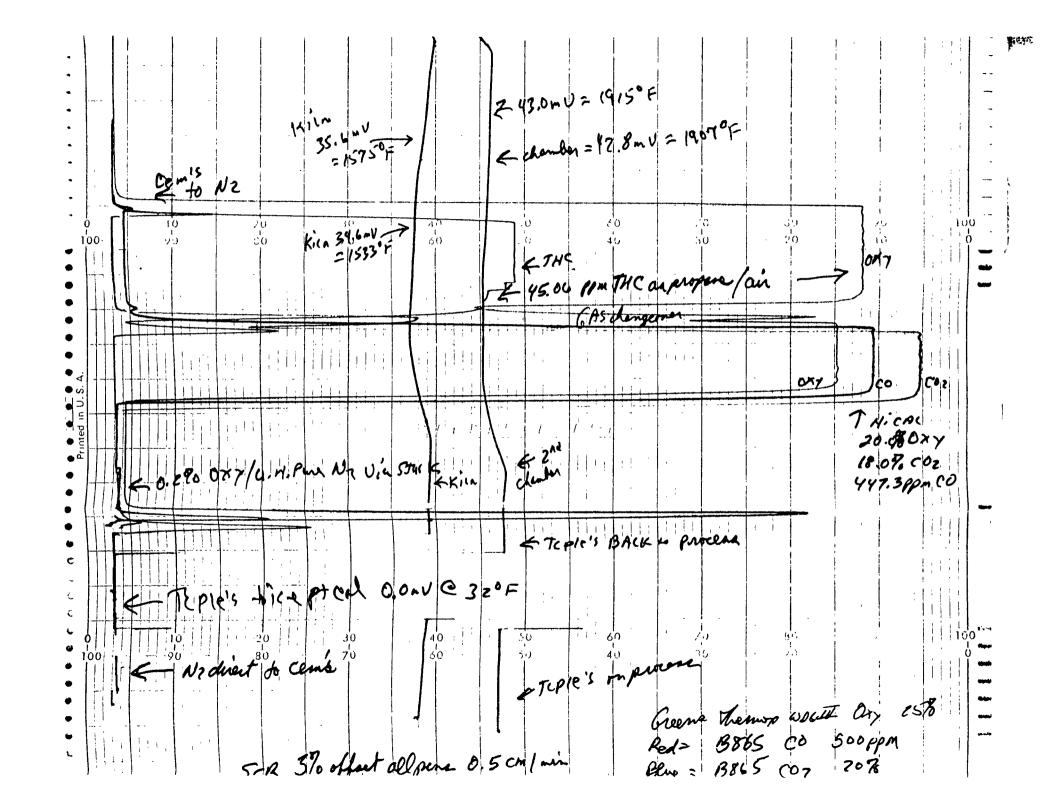


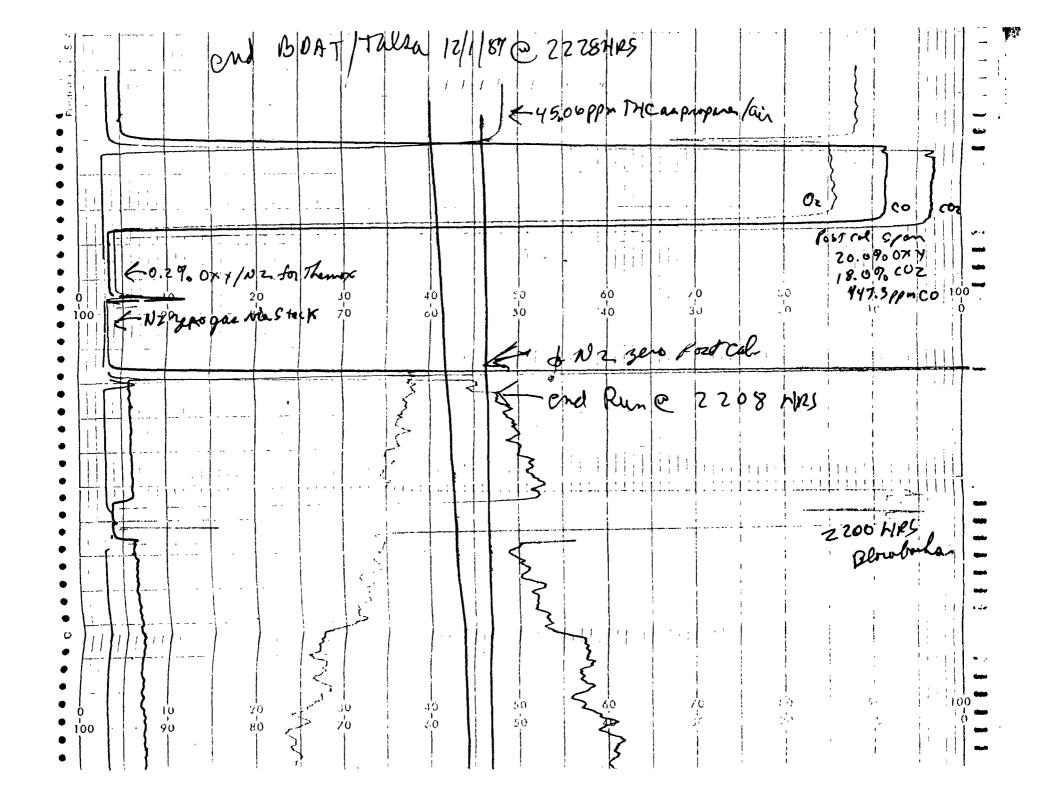



. .

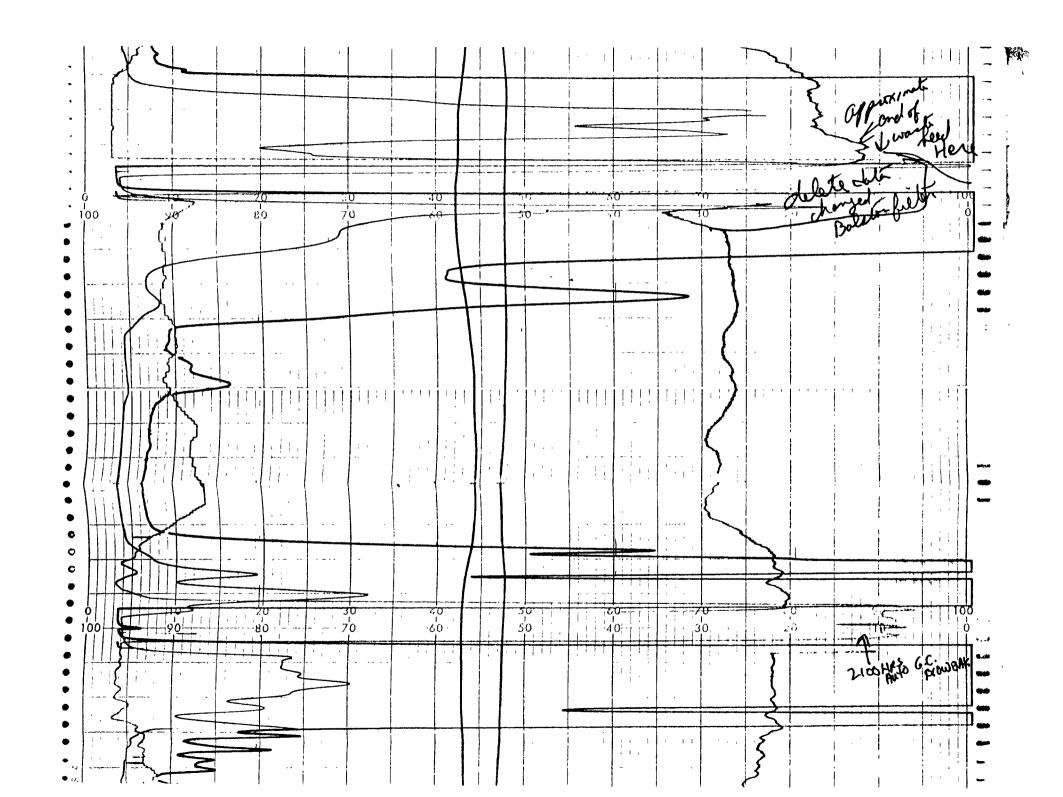

• 1000	30 40 80 70 60	50 50 50 3	12/4/1/5
Printed vid S A			
0 100 - 90	30 40	50 40 3	0 1 1 4 2 4 1 5 100° 100° 100° 100° 100° 100° 100°

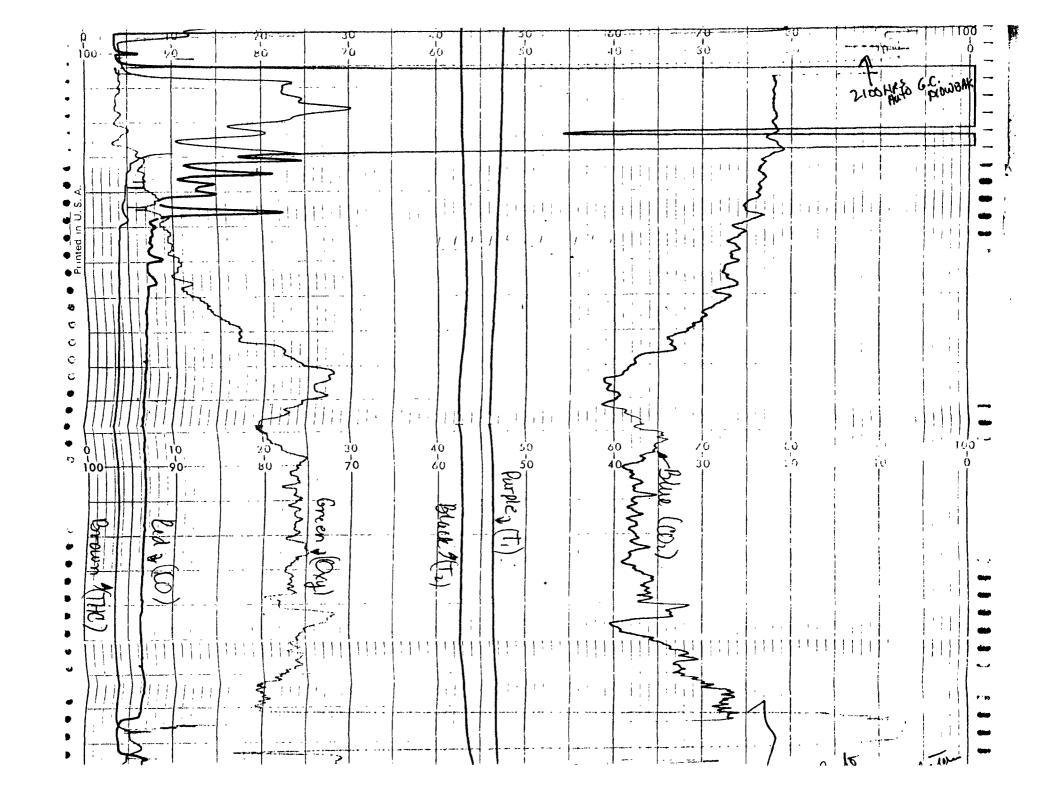


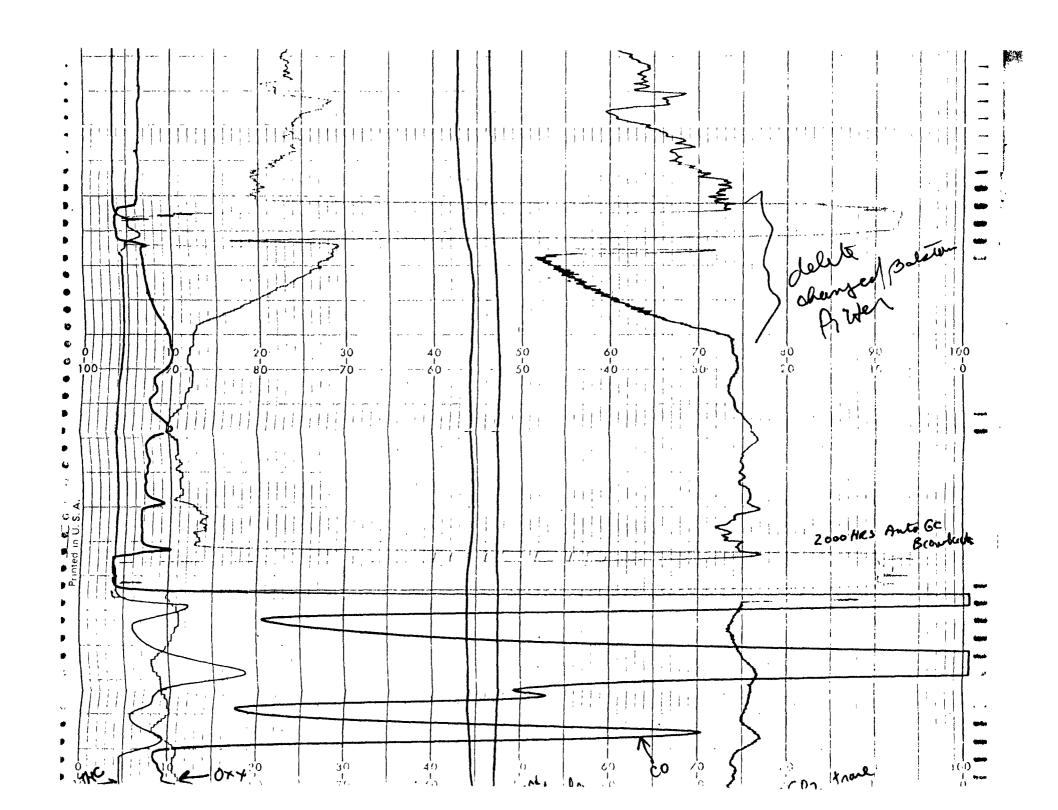


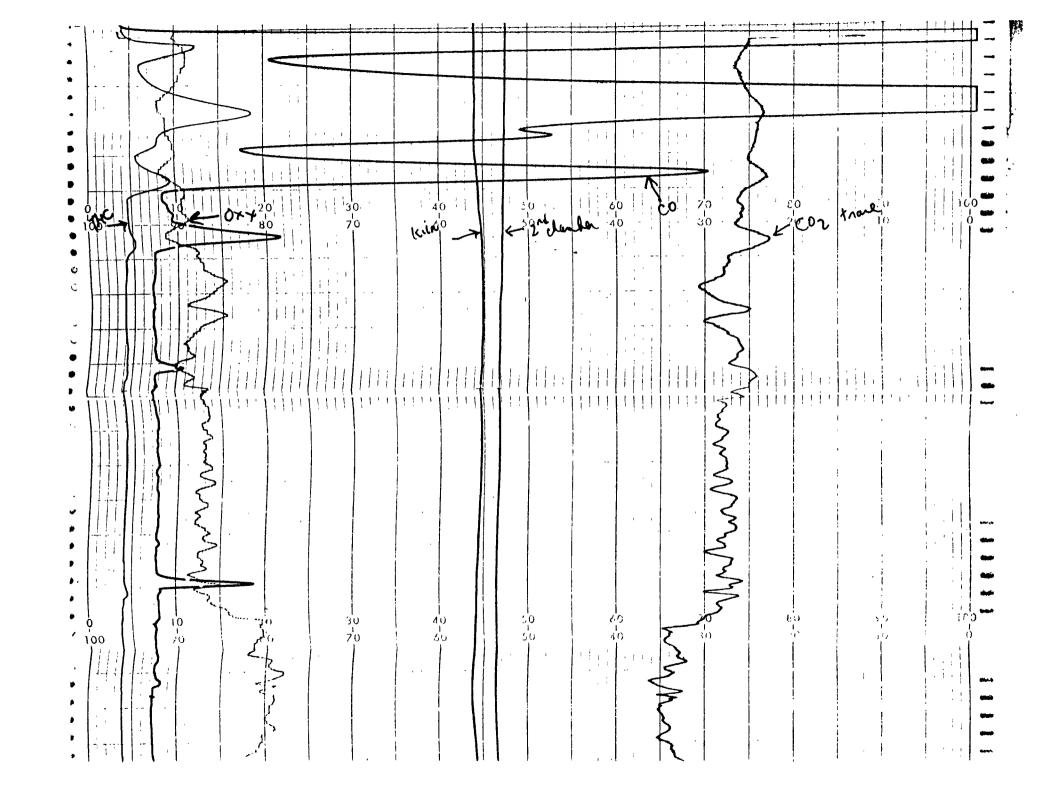


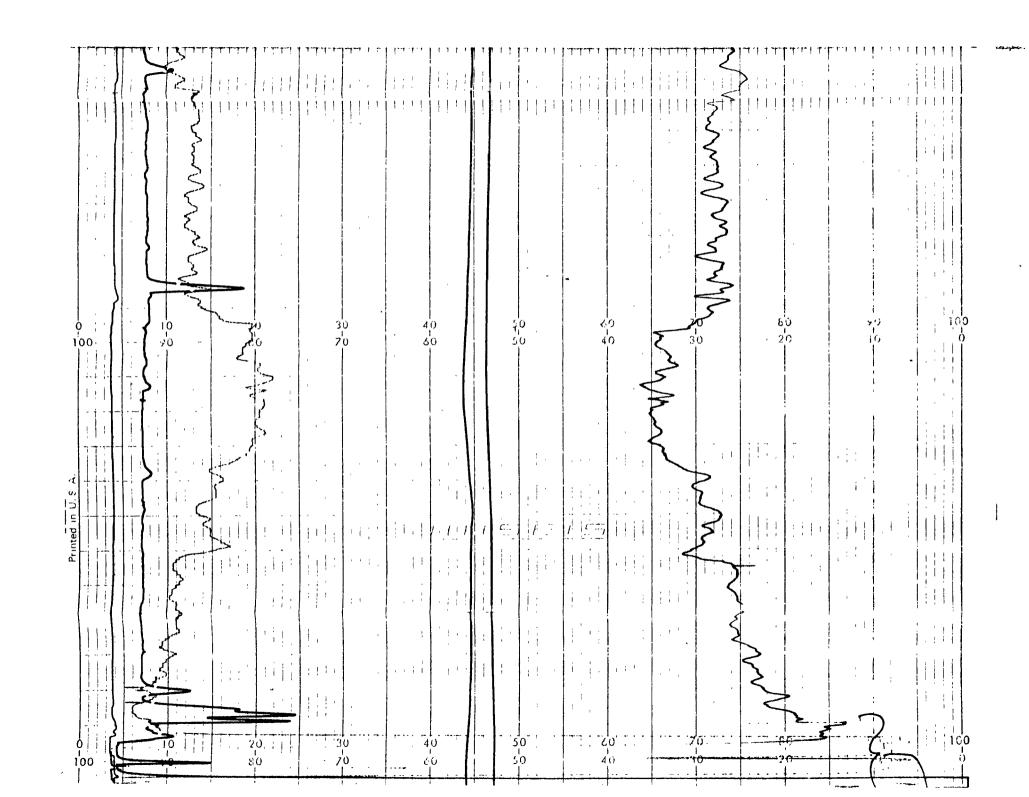
P. 113167.	60xy/W2 3ew			20.09.007 18.09.002 447.35P41
		₹ 7cpe's #	Hele to France To	ple 1 = BlACK = K. Co re 2 = Payle = Charles
100	120 30 30 70	F = 0 mV	60 70 Si	100
			Rul= Co 3	2575 2070
PLITATE P	offset O.S. m.	7 DAY		100 ppm propere
2/9/87	AT TIMESA	John Zink	Kiai wa	ste 1
0 100 70	201 1 30	MENRS TEST	anner 12/3/87 "	0 10 100

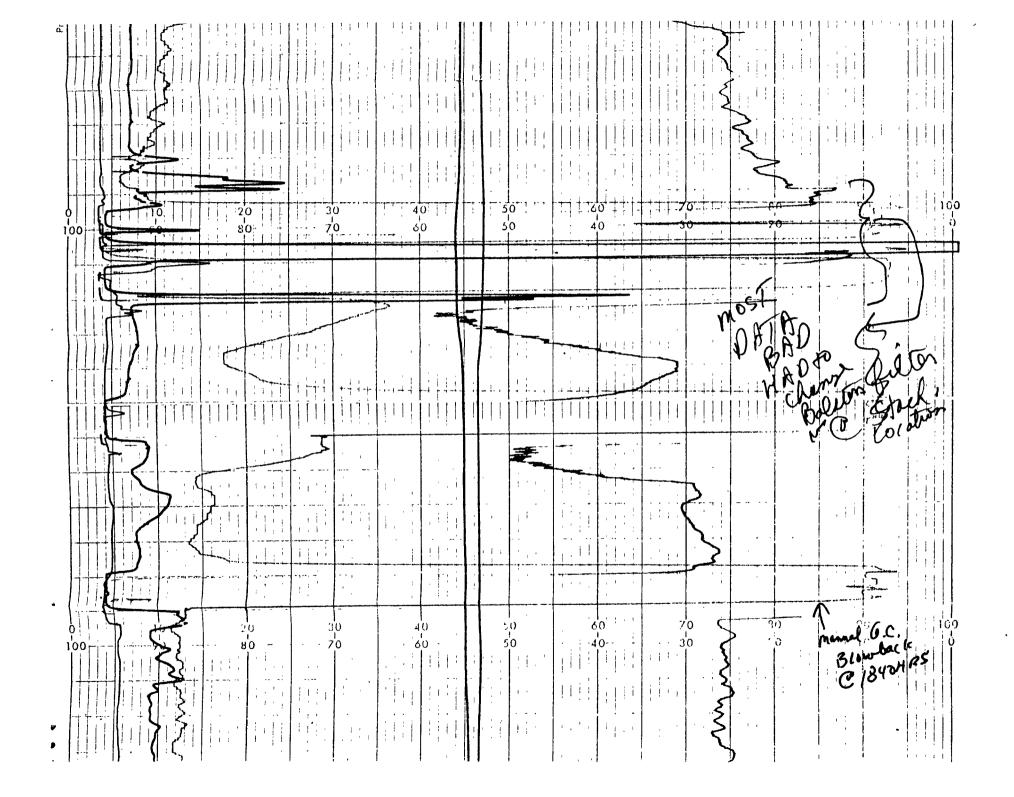

100 - 20 30	W8HRS Test Hoday	12/3/87 80
	aborte	3
-		
- K		
P. integral		
• • • • • • • • • • • • • • • • • • • •		
• 0 100 30 30 80 70 70	40 50 60 60 60 60 60 60 6	70 100 1
÷		

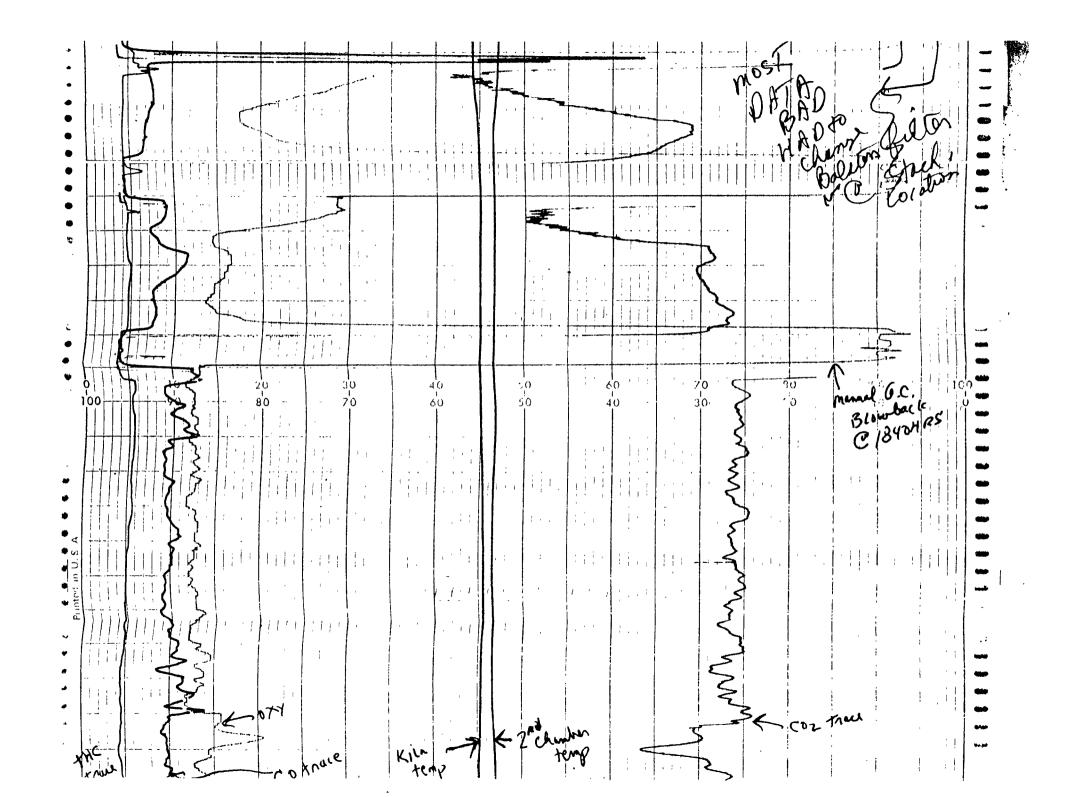


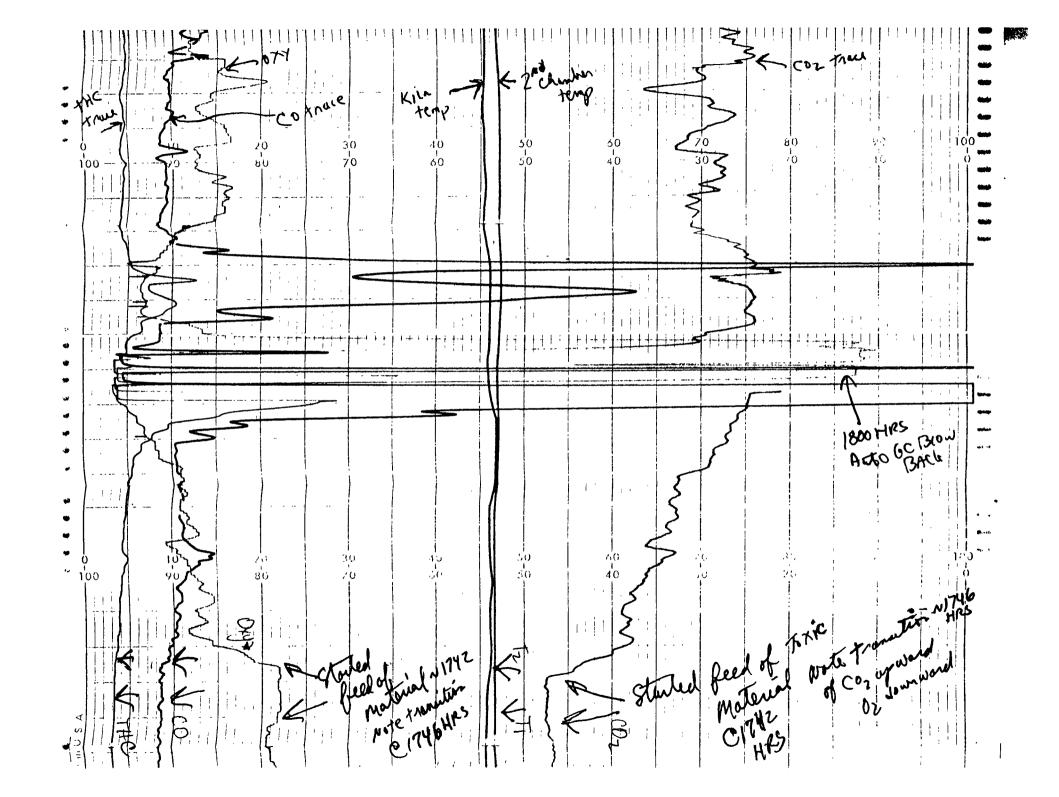


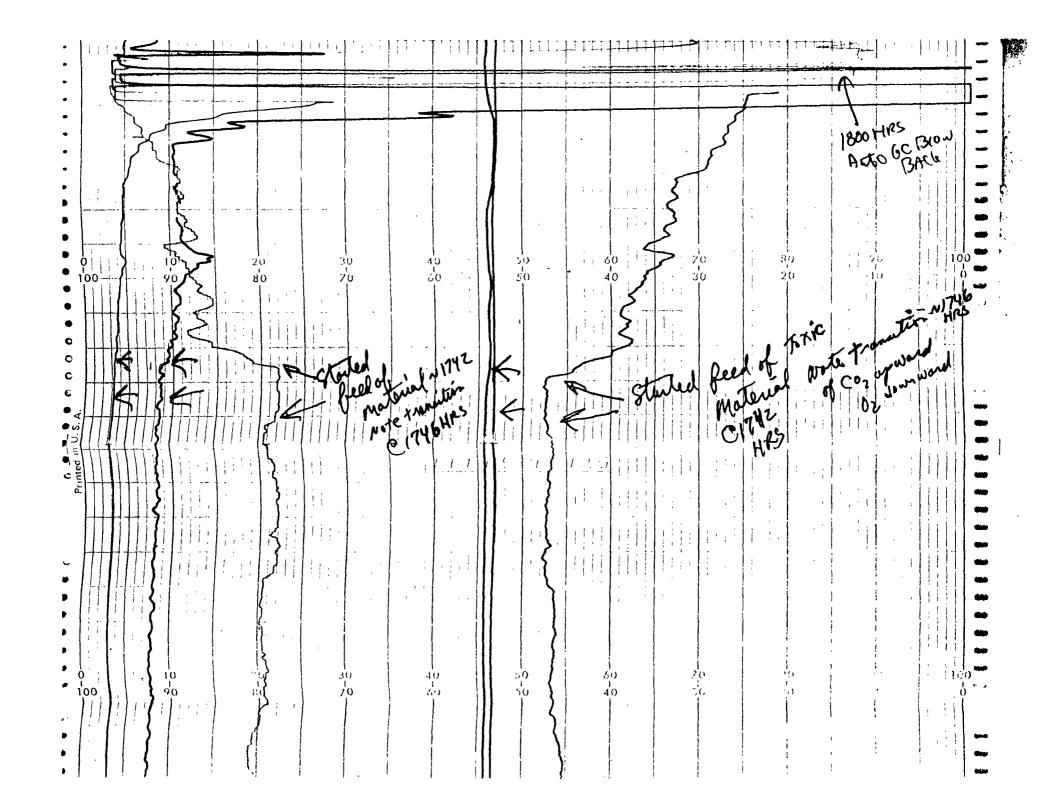


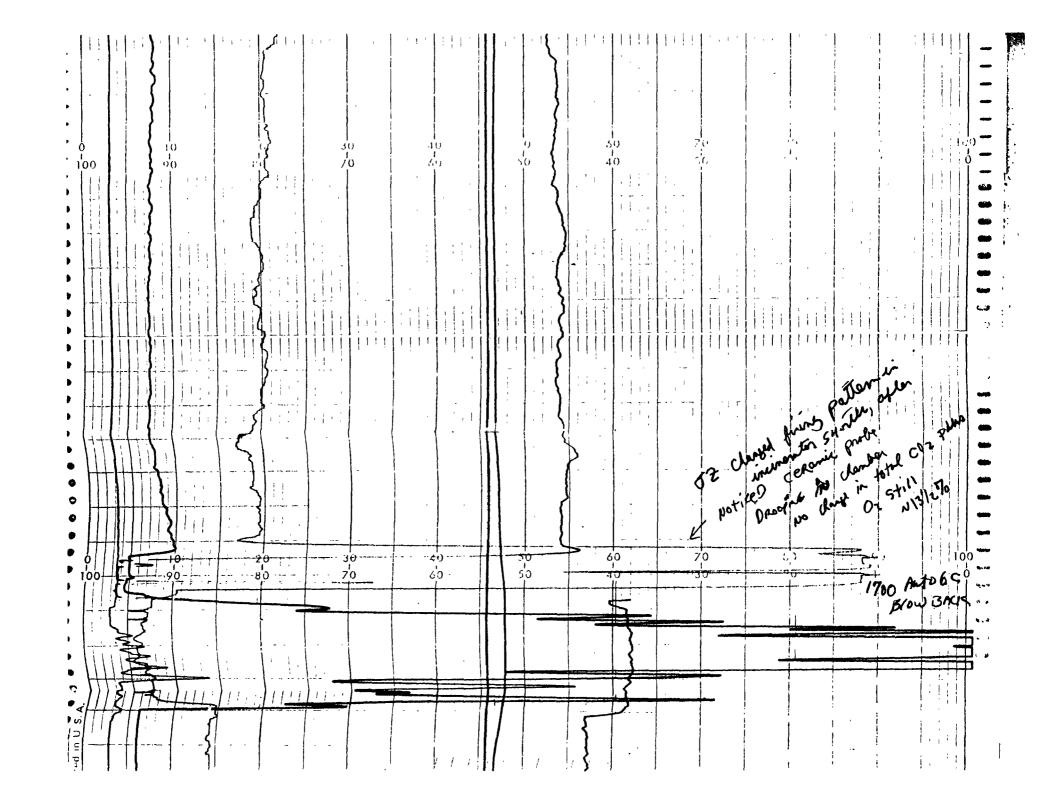

12/3/87	Test#2 0	ut allpens o Usenifies we John Ziak a	nlt .	Blue = B865 Brown = B480 Black = TCPCE		
0 100 90	20 30 70	40	50 60	70	80 20	
Printed in U.S.A.	NBOAT	/Talsa 12/1	1 1 1 1 1	Pt Carpingue /a	is a second seco	
					02 , 00	COL

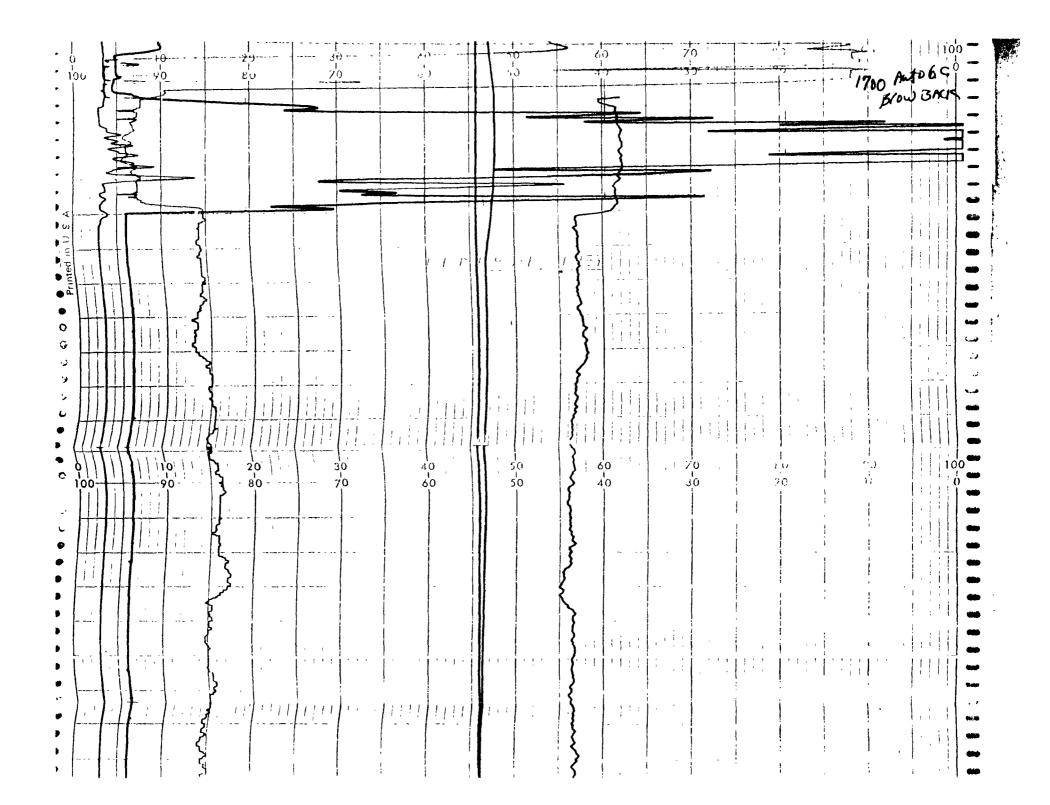


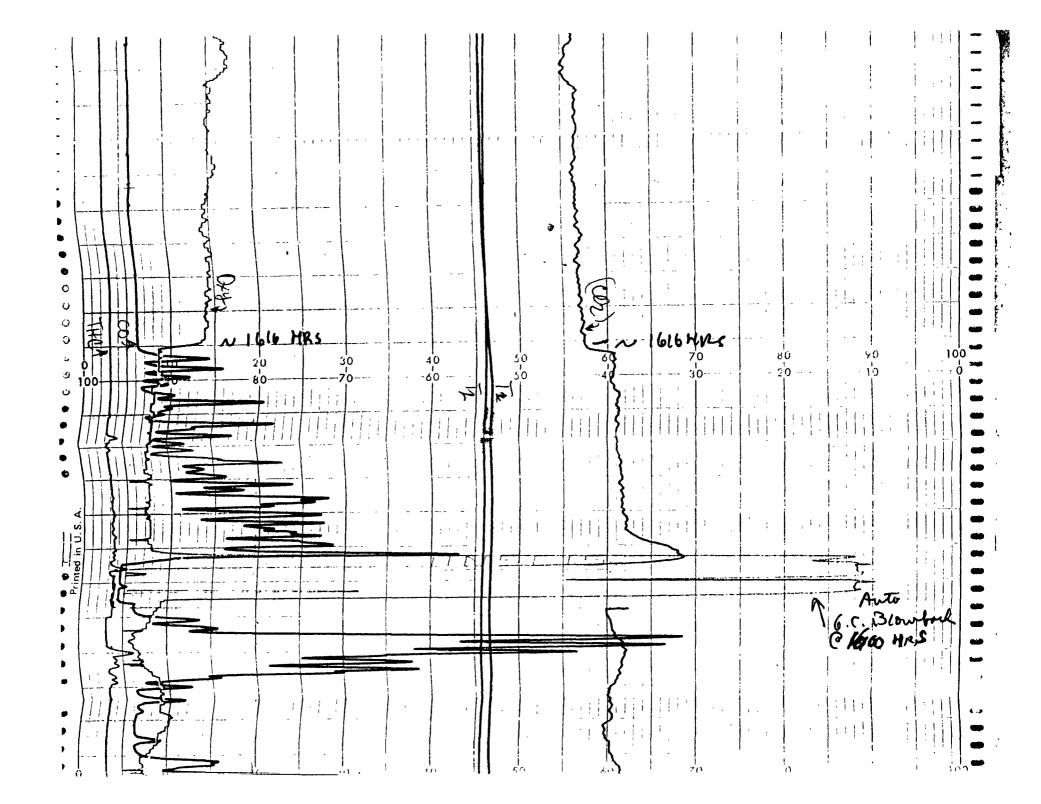


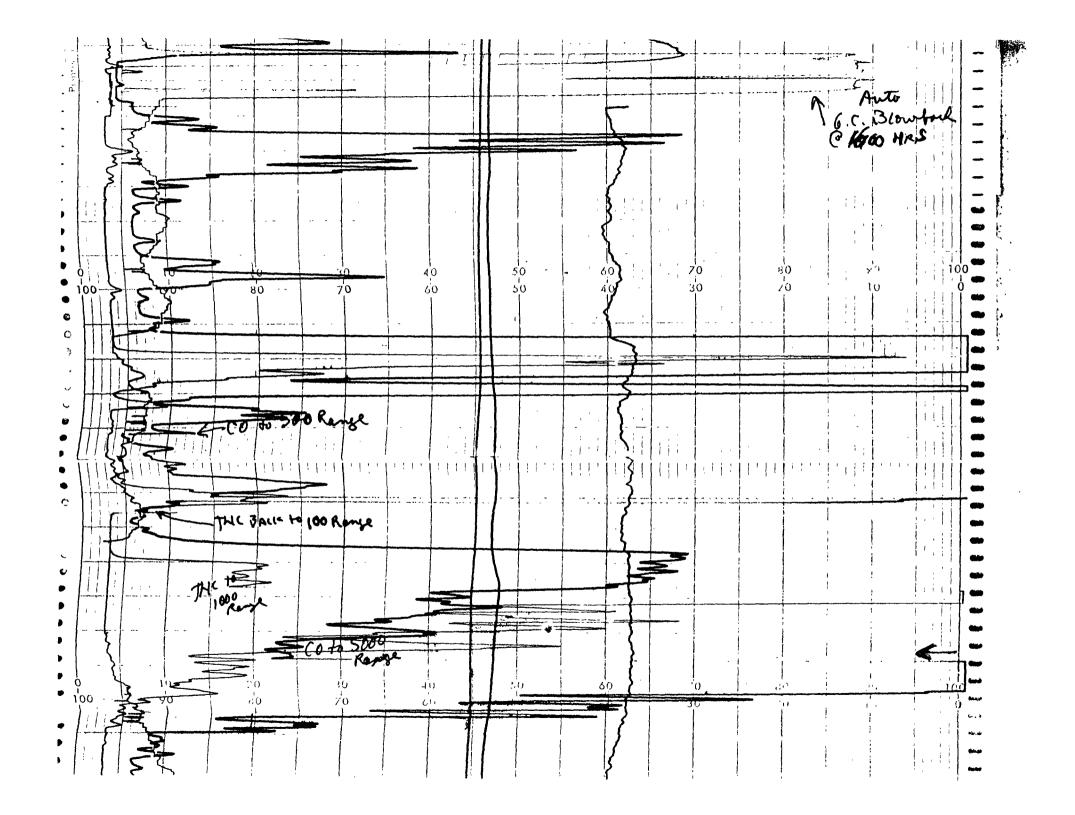


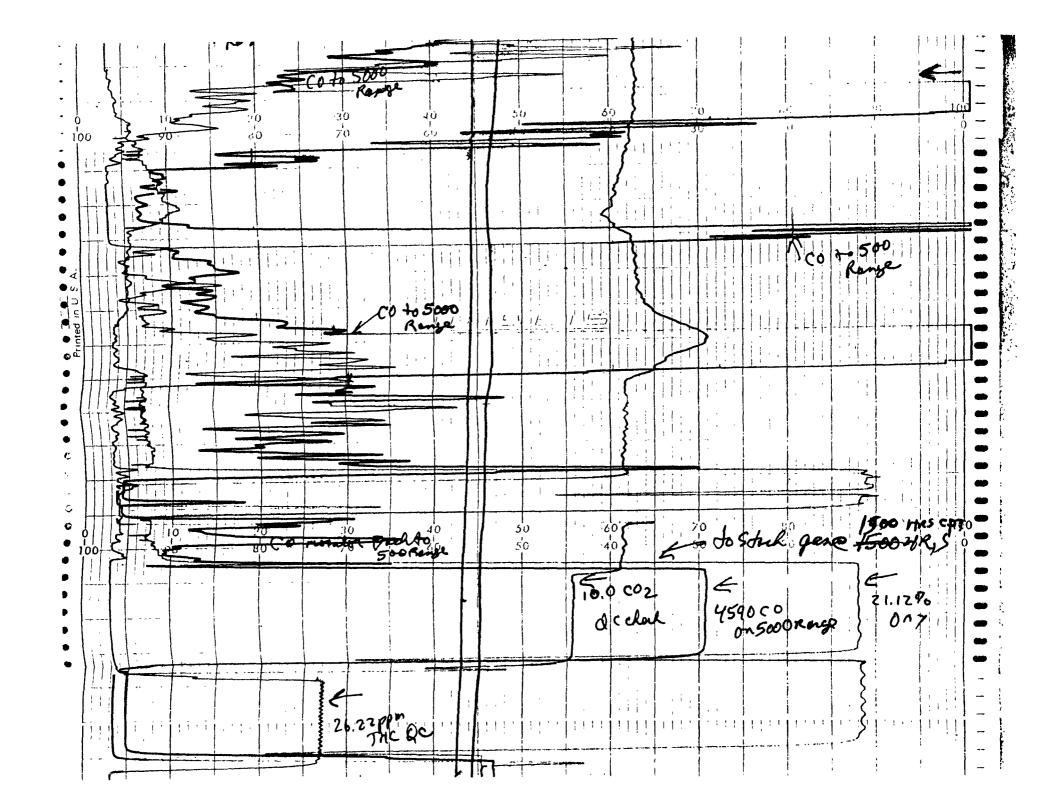


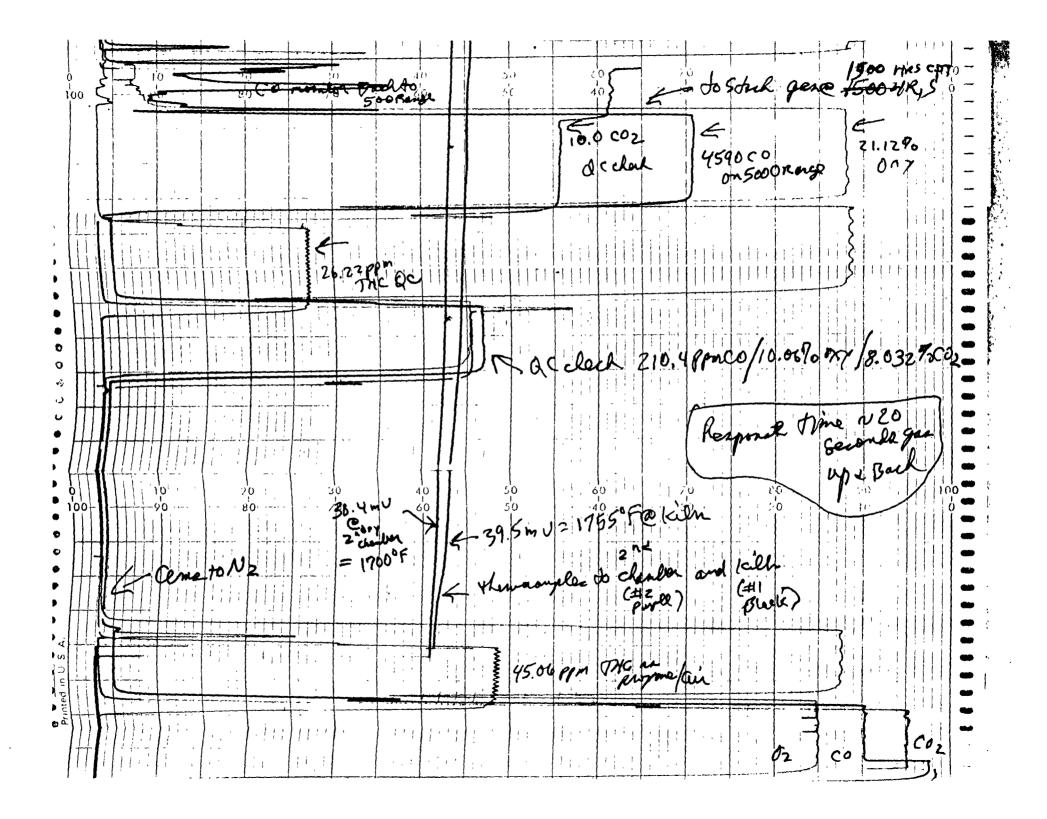


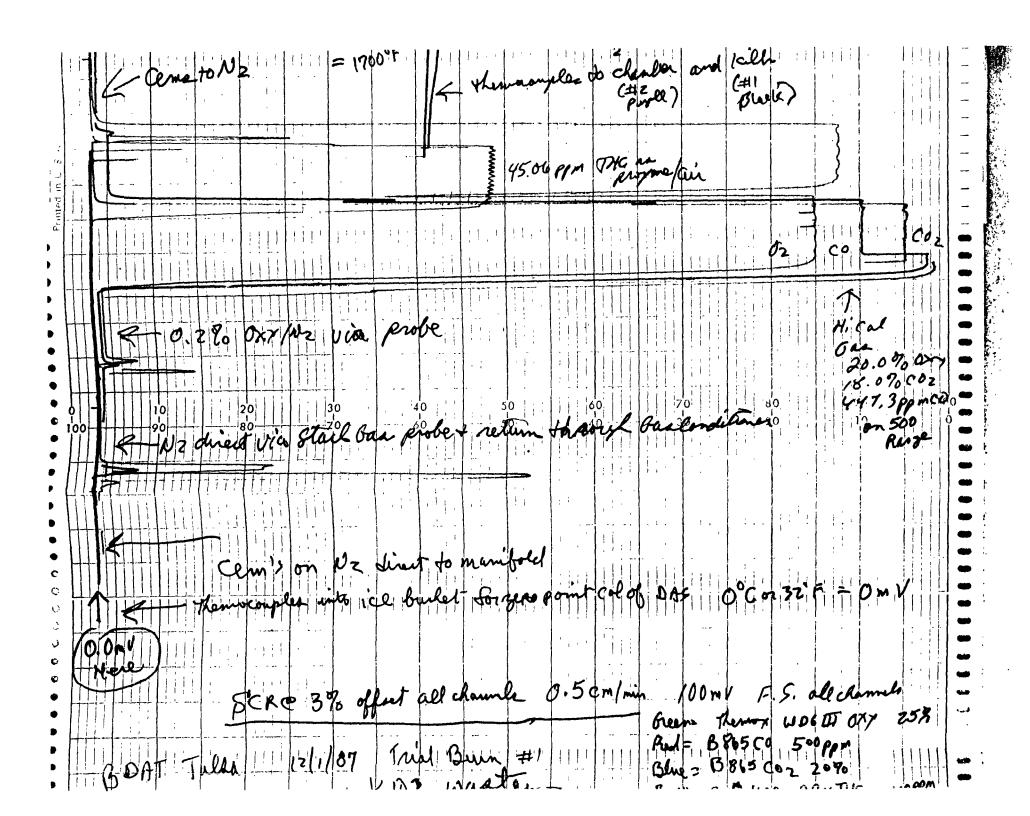












O.OnV		ce bushelt for	Ber gam 1949	0 G 07 32	
BOATTILL	14 11 12 11 87	KDZ was	#)	Greens Themax WD Red= B865 Ca 50 Blue = B865 Ca 2 Brown = B400 O	2090 QYTHC 100APM
. Y.					

.

•